

Housekeeping

In case of emergency: Evacuation Point: Adjacent to the Apple Store, New Street

Conference Agenda

June 16th

WELCOME & PROJECT OVERVIEW

R&D TRIALS

AND RESULTS

9:15 Welcome & Overall Ambition

Registration

Keynote 1 - Moonshot II Project Overview 9:30

R&D Trials: Innovative Inspection Techniques Overview

RF Induced Ultrasound, Electric Impedance - Sentec

Guided Ultrasonic Waves - Omnia Integrity 11:05

11:35 Muon Tomography - GScan

O&A: Panel Session

12:30 ----- Lunch & Breakout -----

Huntingdon Viaduct NDT Trials: Overview

Ultrasonics, Tomography, Impact Echo, Ground Penetration Radar (GPR), Acoustic Emission -MISTRAS | Screening Eagle | Allied Associates

Ground Penetration Radar (GPR) - Bridgology

Climbing Crawler Robots - HausBots 14:40

14:55 NDT Trials: Additional testing results

15:10 Q&A: Panel Session

15:35 ------ Break -----

Data Federation and Interpretation Approach

NDT Trials: Summary of Technology Performance

17:05 Day 1 Round Up

17:15 ------ Networking Session -----

RESULTS **FEDERATION AND** SUMMARY

NON-DESTRUCTIVE

PRESENTATIONS:

MOONSHOT FINDINGS

TESTING

STRUCTURES MOONSHOT

June 17th

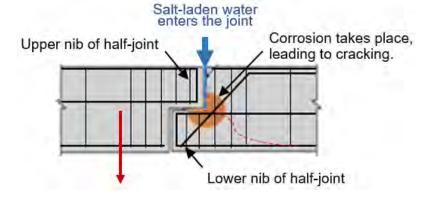
Welcome & Overview of Day 2 9:10 Overview of Testing on Wickwick Bridge 9:20 GNR - X-ray Diffractometry (XRD) University of Strathclyde - Adaptive Lighting for the Inspection of Concrete Structures (ALICS) Wickwick Trials: Q&A Session Muon Tomography Trials on In-Service Structures 10:20 ----- Break -----NDT Practitioner's Toolkit Moonshot III: Network Deployment & Further Development Conclusions & Round Up 11:50 Closing Remarks

IMPLEMENTATION SESSION: TECHNOLOGY **IN PRACTICE**

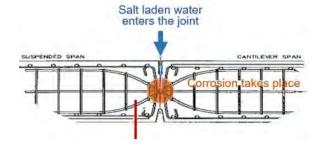
KEY OUTPUTS, CONCLUSIONS, AND **CLOSING REMARKS**

Increased traffic, winter maintenance and poor water management.

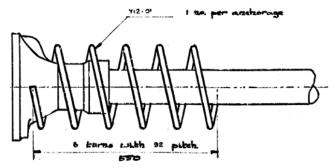
The Challenge



Priority Risk Structures



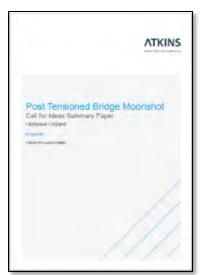
Half-joint Bridges:

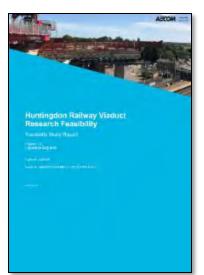


Deck Hinge Bridges:

Post Tensioned Bridges

Risks and consequences of not meeting the challenge





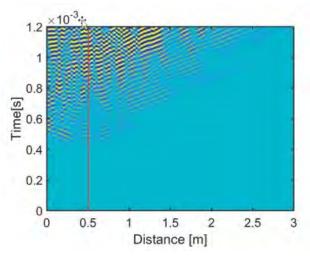
Feasibility Studies

Viaduct Demolition

Recovered Section

Feasibility Studies Commissioned and Completed

Workstreams

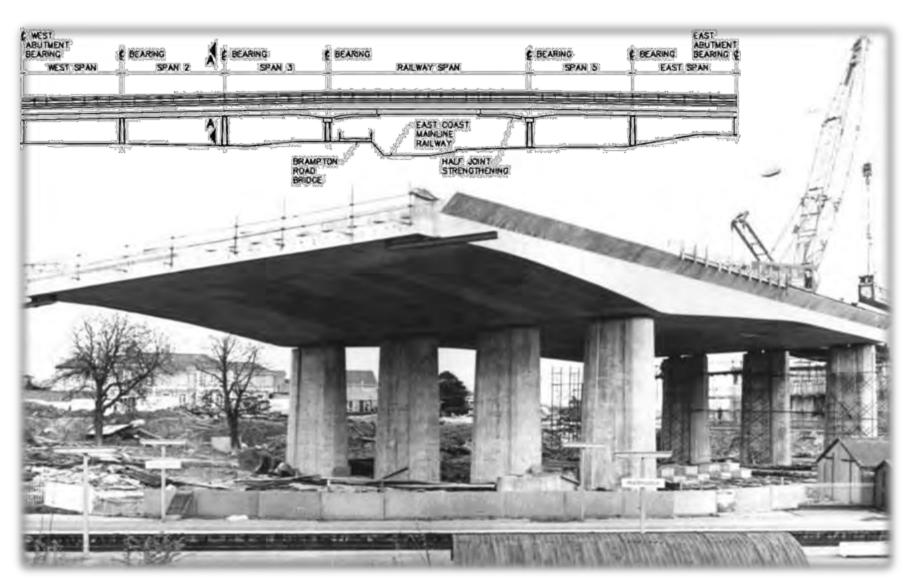

STRUCTURES MOONSHOT

Development of Innovative Technologies

 We commissioned work on lower TRL technologies that have potential to support our aspirations.

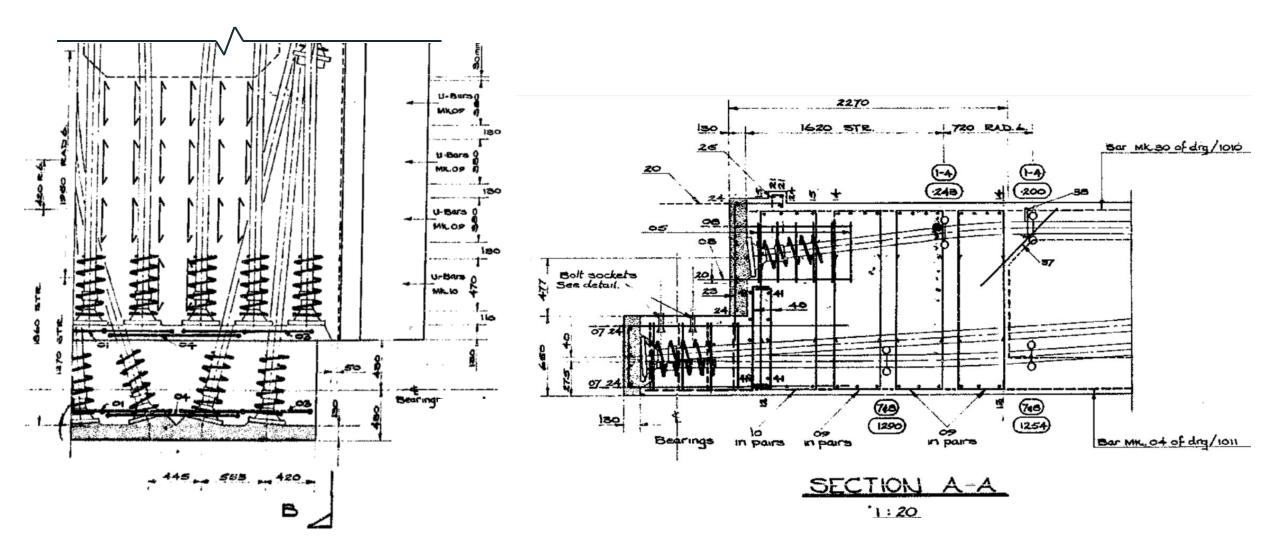
The Huntingdon Railway Viaduct Trials present two opportunities:

- The ability to verify the conclusions drawn from 20 years of monitoring (e.g. Have wire breaks occurred in the post-tensioning system, and have they occurred where the acoustic emission system indicated?)
- A test bed for established and emerging technologies/methods (relatively high TRL technologies), with direct verification of results possible through careful hydro-demolition.



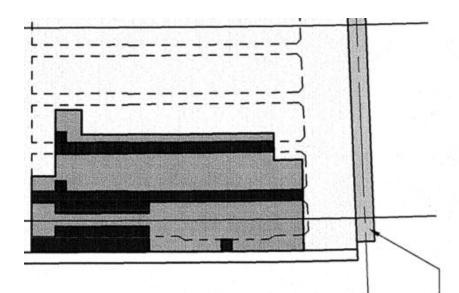
Construction Date - 1975

Total Length - 225.8m (6 spans)


Main Span - 64.3m

Carried - A14 (4 lanes)

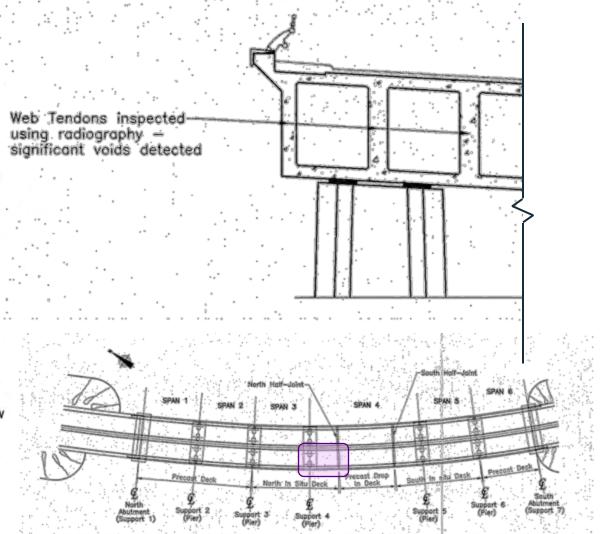
Crosses - East Coast Main Line & Brampton Road



Activity	Contractor	Date Carried out	Location	Key Observations
Structural Health Monitoring installed	Pure Technologies (now Xylem)	1998 to 2020	6 'Zones', covering the north and south monoliths (Note that the Moonshot samples were removed from Zone 2 and Zone 5)	The largest number of detected wire breaks occurred in Zones 2 and 5 – 43 confirmed wire breaks (CWB) and 5 possible wire breaks (PWB) between 1998 and 2020 (52 CWBs and 10 PWBs recorded in total).
Visual Inspection	AECOM	2020	Monolith half-joints	Inspection of the re-entrant corner along the of the joint following the removal of the main span.
LVDT crack measurement	Strainstall	2001 to 2020	Monolith half-joints	
PTSI	Amey	2017	Spans 3 and 5 (longitudinally post- tensioned) West span (1), span 2 and span 6 (transversely post-tensioned)	
Structural Assessment	URS	2014		
Endoscope Inspection		2012	Monolith half-joints	
Facia inspection		2010	Monolith half-joints	
PTSI	Thorburn Colquhoun	2000		
Structural Assessment	Mouchel	1995		

PROJECT

RADIOGRAPHY

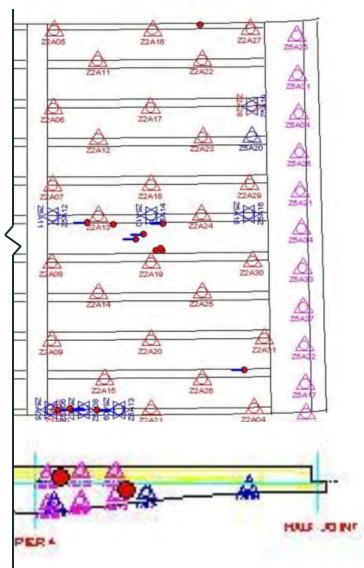

More than 20% Voiding.

Less than 20% Voiding.

Further Investigation required.

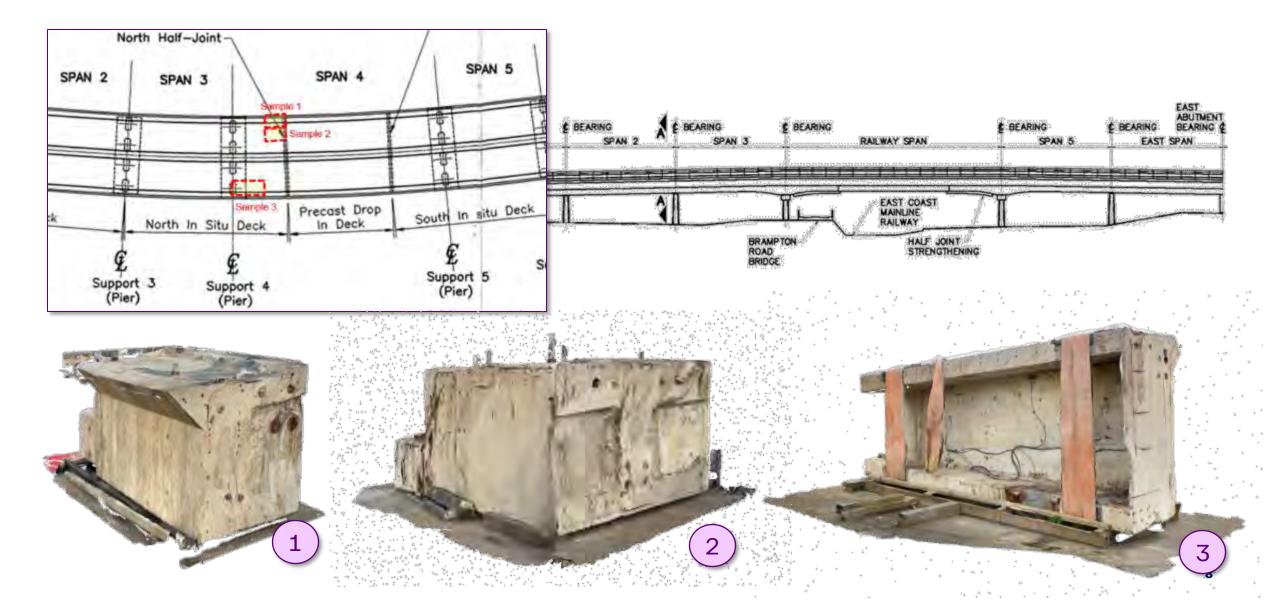
Half-Joint Zone.

10 out of 40 Anchorages within half—joint radiographed. (No significant voids detected) Radiographs relate to lower row of anchorages. Upper row not radiographed.



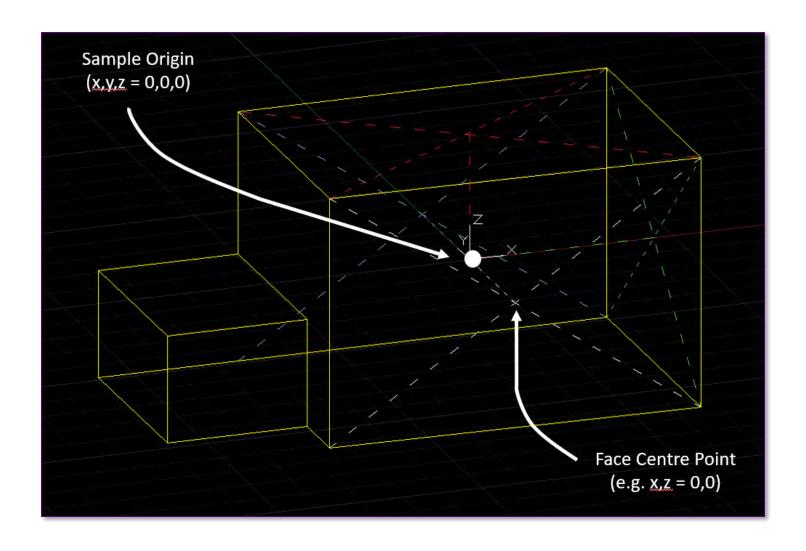
Zone	No. of wire breaks
Zone 1 - North Back Span	1
Zone 2 - North Cantilever Span (Includes Zone 5)	33
Zone 3 - South Cantilever Span	9
Zone 4 - South Back Span	3
TOTAL	46

2018 Events:				
None				
2019 Events:				
02/04/2019 01:28 Possible Wire Break	Zone 2 (North Cantilever Span)			
19/05/2019 12:54 Wire Break	Zone 2 (North Cantilever Span)			
19/05/2019 12:55 Wire Break	Zone 2 (North Cantilever Span)			
25/07/2019 12:15 Wire Break	Zone 3 (South Cantilever Span)			
13/10/2019 03:19 Wire Break	Zone 3 (South Cantilever Span)			



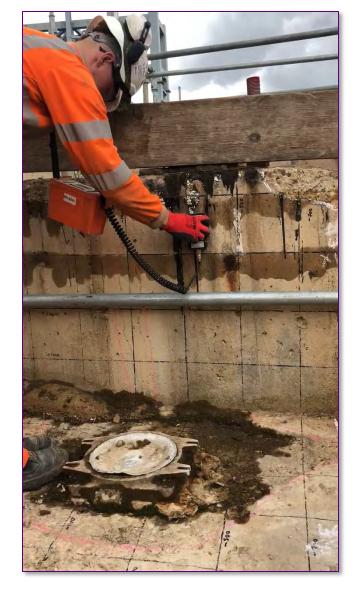
- Temporary strengthening carried out in 2003
- Concerns of the condition of the main cantilever half joints
- Beams increased from 750mm to 1775mm
- £11m scheme completed in August 2013

Huntingdon Viaduct – Sample Extraction

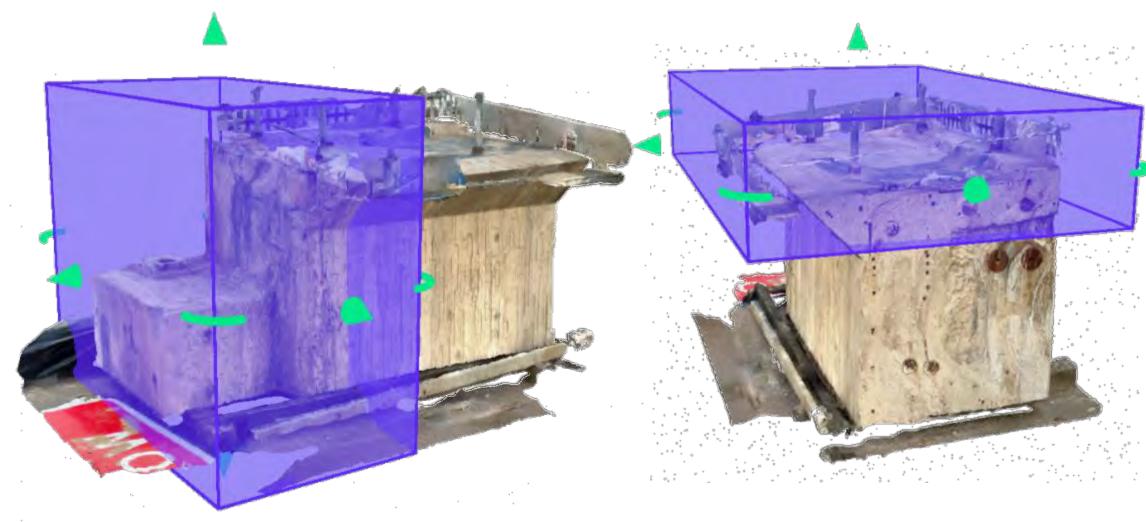

Huntingdon Viaduct – Sample Extraction

Defect Naming Convention and Reporting

Toddington Site - Setup & Access



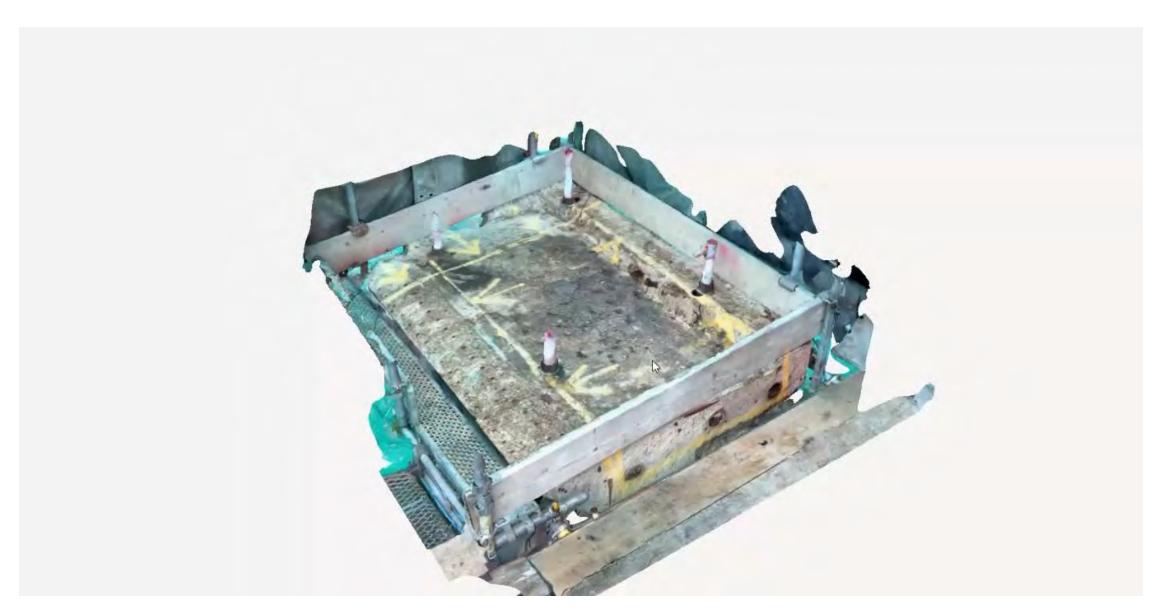
Non-Destructive Testing



Hydrodemolition – Sample 1

Hydrodemolition Findings – Sample 1

Hydrodemolition Findings – Sample 1

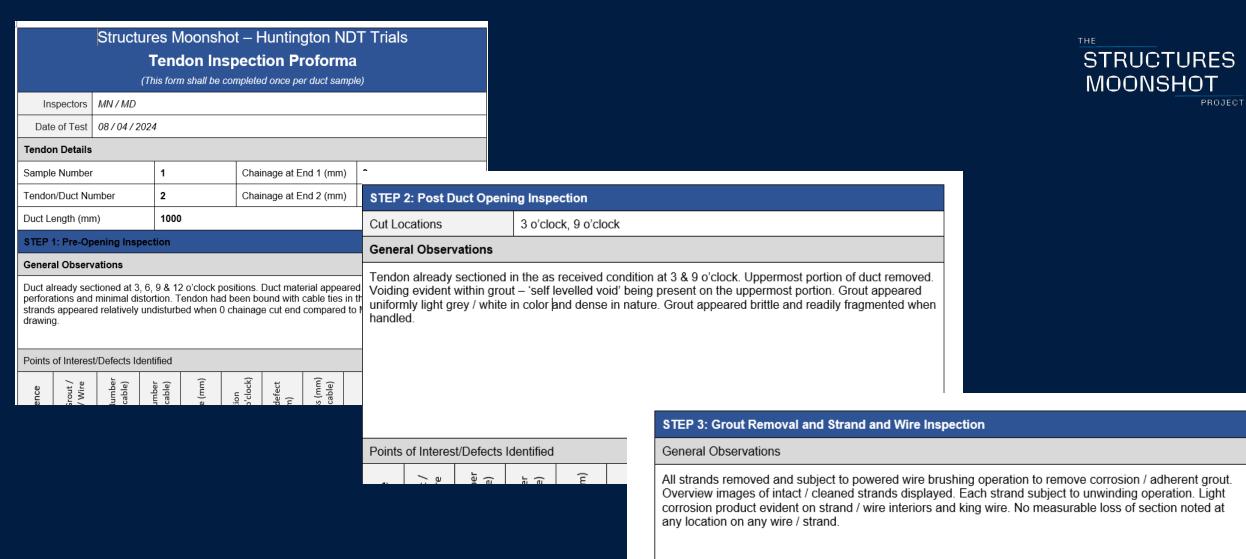


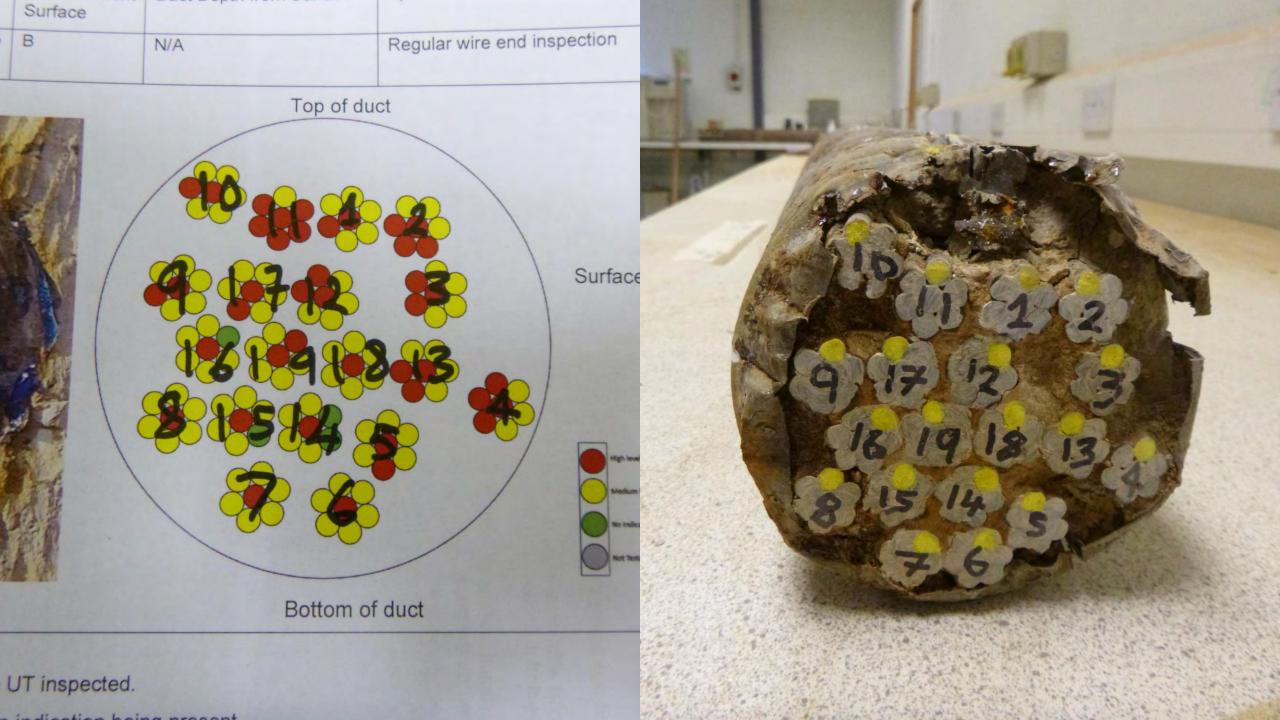
Hydrodemolition Lidar Scanning

Hydrodemolition – Sample 3

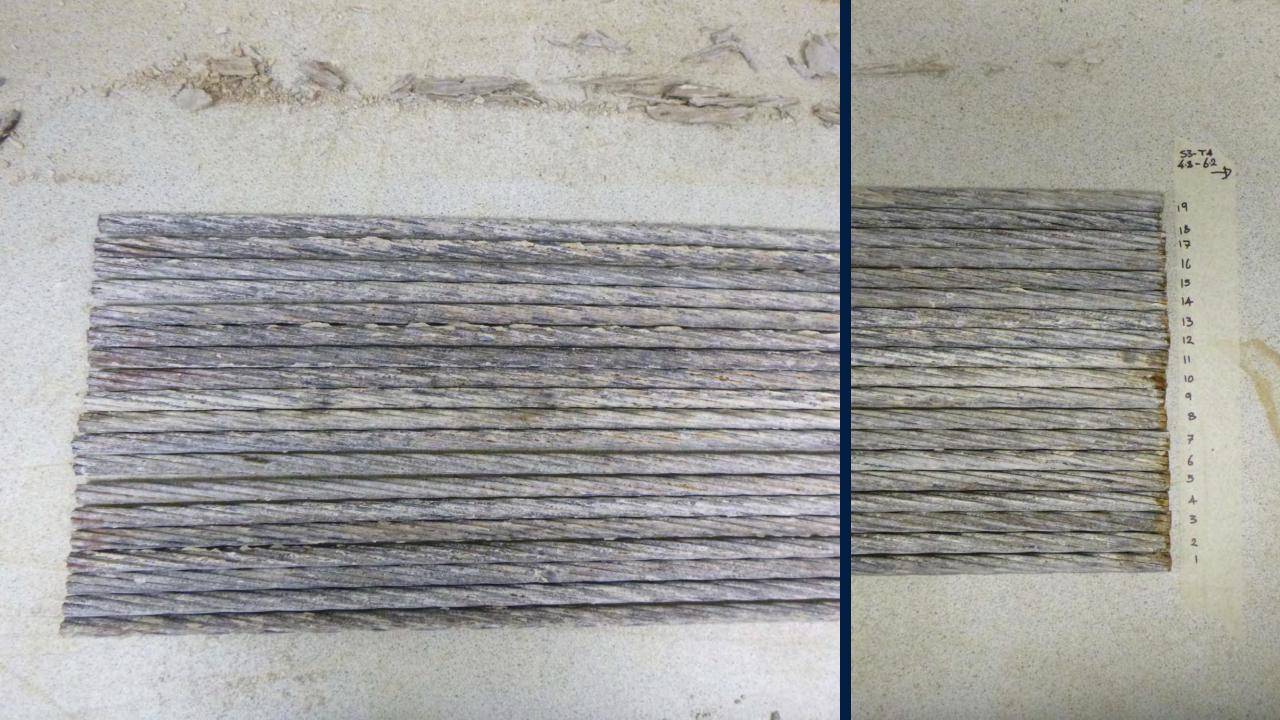
Hydrodemolition Findings – Sample 3

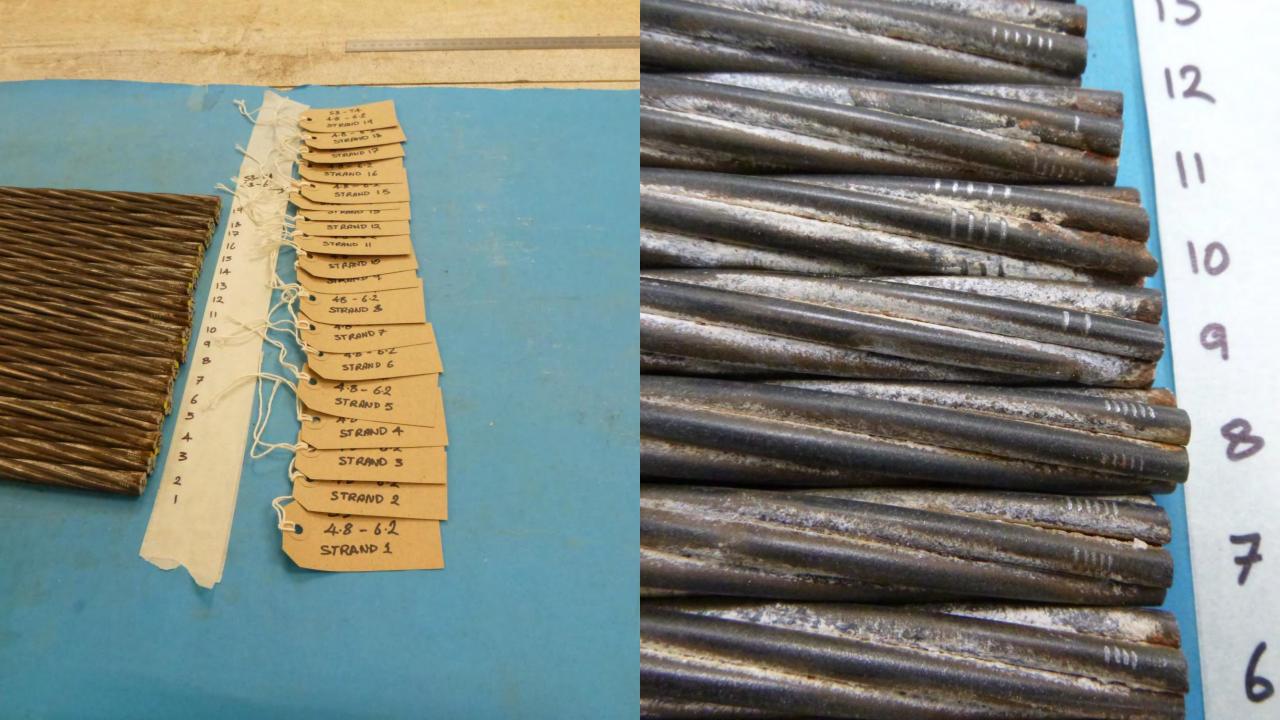
Extracted Tendons and Samples




Inspection Process Summary

Points of Interest/Defects Identified





All stra	ands sub	ject to full ur	nwinding opera	tion. Defective regions <u>itemised</u> as follow:
Reference Figure	Strand Number	Chainage Chainage (mm)	Approx % Loss of Section	Description
1	1	270 - 400	N/A	0 – 270mm wires missing due to tensile fracture of all wires in strand. Fractures appeared brittled and not attributable to section loss – no additional broken wires in evidence.
		570	0 - 25	Swelling on Strand / Grout forced into interior. No additional broken wires evident when fully unwoun although generally corroded.
	2	580	N/A	Swelling on Strand / Grout forced into interior
2		1470	0 - 25	Swelling on Strand / Grout forced into interior – no broken wires in evidence when unwound.
3	3	600	50 - 75	Strand exterior in heavily corroded condition. Significant / major section loss on outermost wires at 600mm chainage.
		1010	N/A	Tensile break in king wire at 1010mm chainage.
	4	140	N/A	Crack in outer wire – wire appeared to be in buckled condition.
4		300	0 - 25	Section loss on all outermost wires evident when unwound. No breaks in king wire.
5	5	N/A	Wires generally year correded but	
6	6	N/A	Wires constally year correded by	
7	7	670	Wires severed by coring operation	
8	8	Wires severed by coring operation at 670 0 - 25 chainage. Wires generally corroded		Wires severed by coring operation at ~670mm chainage. Wires generally corroded but no major loss of section
9	9	2 wires severed by coring opera		2 wires severed by coring operation at ∼670mm chainage. Wires generally corroded but no major loss of section
10	10	N/A	0 - 25	Wires generally corroded. No breaks recorded.
11	11	N/A	N/A 0 – 25 Wires generally corroded. No brea	
12	12	N/A	0 – 25	Wires generally corroded. No breaks recorded.
13	13	N/A	0 – 25	Wires generally corroded. No breaks recorded.
14	14	appeared brittle in nat 14 460 0 - 25 sectional loss. Surrou condition but not defo		Break in king wire 460mm chainage. Fracture appeared brittle in nature, not attributable to sectional loss. Surrounding wires in corroded condition but not deformed / stretched and displayed typical sectional loss.

Opening Order	Sample	Tendon	Chainage Lengti			Length	Date Opened in lab	General Strand / Wire Observations
3	1	1	0	-	1	1	29/03/2024	Significant voiding of the grout evident, light surface corrosion of wires
	1	1	1	-	1.5	0.5	03/04/2024	Grout OK, white / powdery, Light surface corrosion
	1	2	0	-	1	1	07/04/2024	Grout voiding at 12'O clock position, Strands and wires all in average condition - surface corrosion
	1	3	0	-	1.7	1.7	07/04/2024	Tendon in very poor overall condition, strands cut (cored) / corroded wires in evidence, Two broken king wires - surrounding wires intact
-	3	1	0	-	1.7	1.7	24/04/2024	Grout voiding at 12'O clock position, Strands and wires all in average condition - surface corrosion
	3	1	1.7	-	3.2	1.5	24/04/2024	Grout voiding at 12'O clock position, Strands and wires all in average condition - surface corrosion
	3	1	3.2	-	4.7	1.5	11/04/2024	Grout intact throughout and at ends, Strands and wires all in good condition
	3	1	4.7	-	6.15	1.45	11/04/2024	Grout intact throughout and at ends, Strands and wires all in good condition
	3	2	0	-	1.7	1.7	25/04/2024	Grout segregation / bleeding (sands) at 12'O clock position, Strands and wires all in good condition
7	3	2	1.7	-	3.4	1.7	25/04/2024	Grout segregation / bleeding (sands) at 12'O clock position, Strands and wires all in good condition
'	3	2	3.4	-	4.6	1.2	17/04/2024	Grout intact @3400 end, loose at 4600 end, Strands and wires all in good condition
	3	2	4.6	-	6.2	1.6	17/04/2024	Poor grout, no significant corrosion except local to 6200 end with minor section loss to wires. Aligns with where minor loss of grout also observed
	3	3	0	,	1.7	1.7	26/04/2024	Grout segregation / bleeding (sands) at 12'O clock position, Strands and wires in poor condition (section loss and corrosion)
8	3	3	1.7	-	3.4	1.7	26/04/2024	Grout segregation / bleeding (sands) at 12'O clock position, Strands and wires in poor condition (section loss and corrosion)
°	3	3	3.4	-	4.7	1.3	02/05/2024	Grout segregation / bleeding (sands) at 12'O clock position, Strands and wires all in average condition (surface corrosion)
	3	3	4.7	-	6.2	1.5	02/05/2024	Grout segregation / bleeding (sands) at 12'O clock position, Strands and wires all in average condition (surface corrosion)
5	3	4	0	-	1.7	1.7	04/04/2024	Poor grout, no significant corrosion / pitting to wires observed
	3	4	1.7	-	3.3	1.6	07/04/2024	Grout intact throughout and at ends, Strands and wires all in good condition
	3	4	3.3	-	4.8	1.5	07/04/2024	Grout intact throughout and at ends, Strands and wires all in good condition
ľ	3	4	4.8	-	6.2	1.4	07/04/2024	Grout intact throughout and at ends, Strands and wires all in good condition
2	3	5	0	-	1.7	1.7	27/03/2024	Minimal grout, One wire break ST.17
	3	5	1.7	-	3.2	1.5	02/04/2024	Minimal grout, some wire pitting
	3	5	3.2	-	4.7	1.5	02/04/2024	Grout over half length of duct, duct steel poor, surface corrosion to wires
	3	5	4.7	-	6.25	1.55	03/04/2024	Grout intact throughout and at ends, Strands and wires all in good condition
4	3	6	0	-	1.6	1.6	03/04/2024	Tendon in very poor overall condition, strands and broken / corroded wires in evidence
1	3	7	0	-	1.6	1.6	21/03/2024	Grout largely intact - different materials - minor pitting to wires noted
	3	7	1.6	-	3.2	1.6	22/03/2024	Grout largely intact - different materials - minor pitting to wires noted
	3	7	3.2	-	4.8	1.6	22/03/2024	Grout largely intact - different materials - surface corrosion to wires noted
	3	7	4.8	-	6.07	1.27	27/03/2024	Grout largely intact - different materials - surface corrosion to wires noted

Thank You

Call for Ideas for New Technologies

Assessment of Ideas

Objective Scoring of Ideas

- 10 criteria
- Assigned % weighting
- 3 defined scoring levels

Ideas Grouped into three categories

- Well aligned
 - Potential transformational implications
- Possible candidate
 - Promise but not developed enough
- Not aligned

Deploy / Develop

- Available -> A14 trials
- Develop > R&D programme

R&D Technologies Commissioned

Direct Impedance Measurement Sentec Ltd

RF Induced Ultrasound Sentec Ltd

Guided Wave Technology
 Omnia Integrity Ltd

Methodology

- Distinct 'phases' with specific outcomes and funding requirements
 - Theoretical analysis
 - Laboratory tests
 - Field tests
- Parallel progression with hold points assessment

Subsequent commission

Muon Technology Gscan Ltd

Two NDT methods

Radio frequency induced ultrasound

Electrical Impedance

Riccardo Di Pietro

Sentec - Product developers since 1997

Technology & Product developers

Main focus – smart sensing

Based in Cambridge UK, Europe's leading technology hub

State of the art facilities

Secure and stable – part of \$8.1B Xylem group

World class development team

Physics
Electronics
Mechanical Design
Software and Firmware
Design for Manufacture
Programme Management

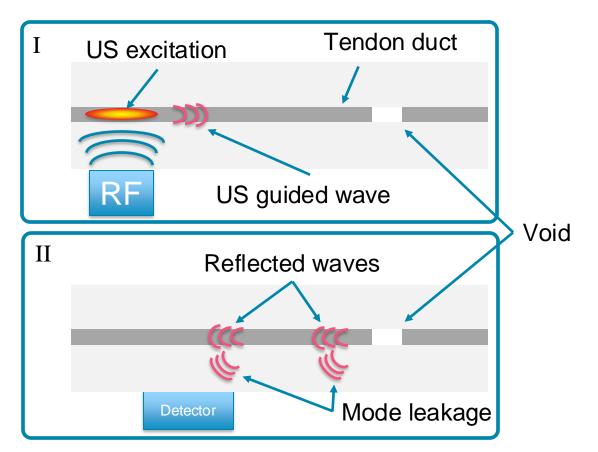
Lucy Electric & Sentec – a ten-year partnership

Development of innovative condition monitoring technologies for the electricity network

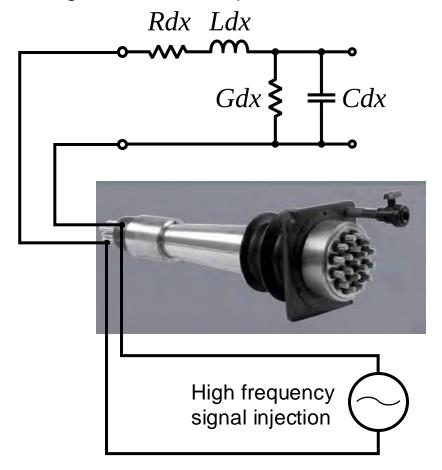
Roles for the National Highways Moonshot:

Implementation partner

Technology and product development partner



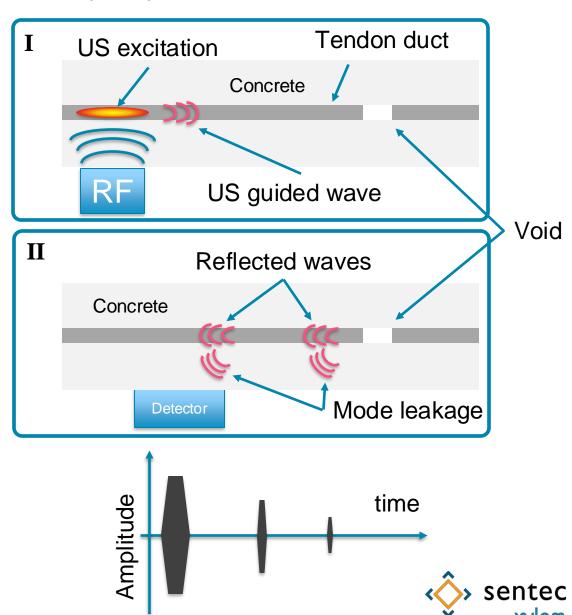
Feasibility evaluation of two methods


Radio Frequency (RF) induced ultrasound (US)

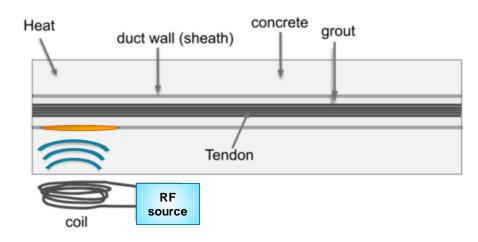
Use RF excitation to generate US contactless in the tendon

Electrical impedance

Detect signal reflections from abrupt changes tendon composition

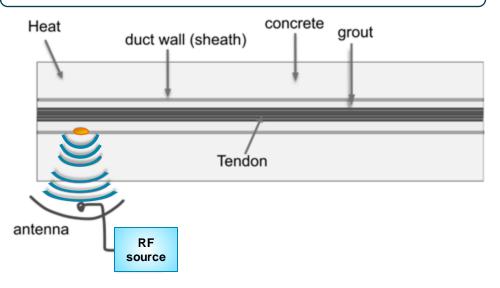


Radio frequency induced ultrasound


Radio Frequency (RF) induced ultrasound (US)

- I Noncontact generation of guided US waves in tendons
 - ⇒ Uses pulsed RF generator placed on concrete surface to locally excite steel tendons and produce acoustic waves
- II Defects/discontinuities reflect acoustic signal, which can be measured externally
 - ⇒ Uses a detector (piezo transducer, laser velocimetry, etc.) placed on the concrete surface
- Retrofittable system Excitation and detection are carried out at the surface of the concrete
- May need multiple transmitter/receiver units to cover the length of the bridge (a pair covers 20 to 100 m)

Near field coil excitation vs. far field RF excitation


1. Near field magnetic field from a coil

More robust excitation geometry

- Easy to generate high intensity pulse
- Better coupling between antenna and tendon / duct
- Efficiency increases with increasing power

2. Far field EM radiation from an antenna

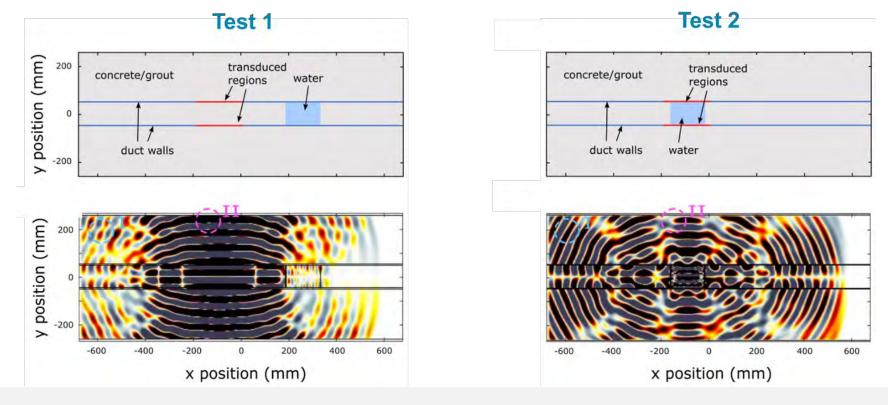
Limitation in excitation method

- Analysis shows absorption is too high at the frequencies required for small spot size
- Could be used for generating ultrasound in the concrete

Proof of principle - Coil generated signal through lintel

 Broadband pulse excites resonant modes in the rebar and slab

Successful non-contact generation of US pulses in buried metal structure



Reinforced

lintel

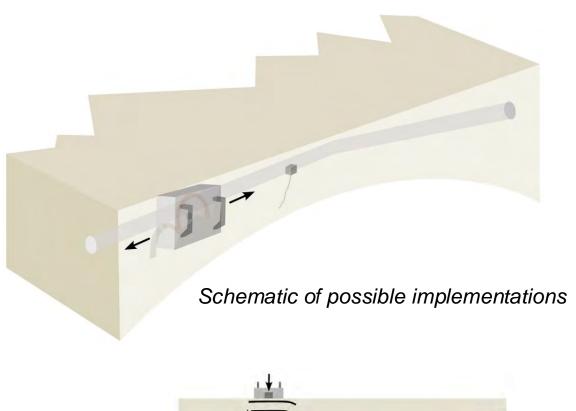
Proof of principle – Modelling the detection of discontinuities in grout

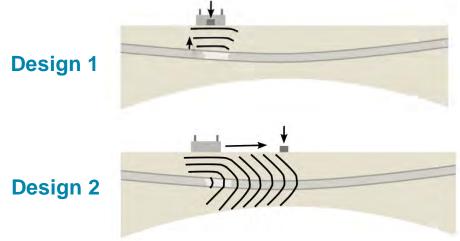
- **Test 1** Detector away from discontinuity reduced signal propagation after the discontinuity
- Test 2 Detector on the discontinuity enhanced signal scattering in all direction

Identified 2 potential methods for detection – scanning or array

Conclusions and possible next steps

Successful noncontact excitation of US pulses in buried metal structures:

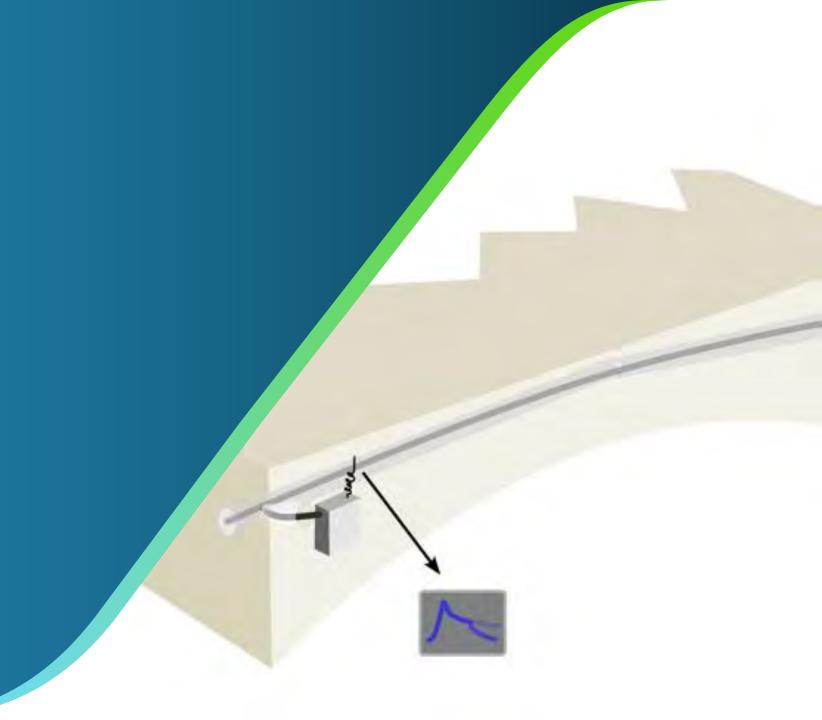

- Signals are transmitted and received at the concrete surface
- No exposure of duct required

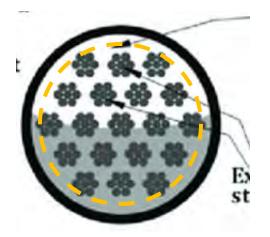

Potential design implementation:

- Transmit coil + detection transducer swept along the length of the bridge
- Transmit coil swept along the length of the bridge + detection transducer(s) strategically placed along the length of the duct, on the concrete surface

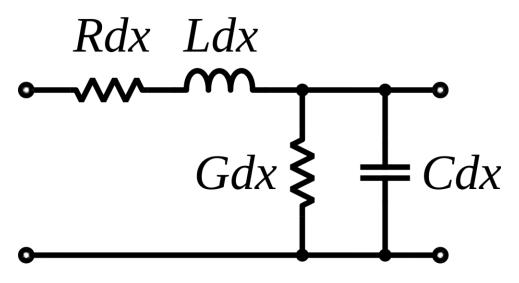
Potential future work:

- Further expand bandwidth and power of coil generation
- Assess feasibility on large scale structures





Electrical impedance


Model current transport in tendon / duct as transmission line

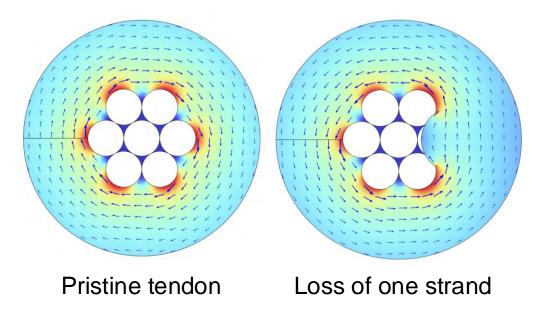
The tendon / duct system can be modelled as a coaxial transmission line

The dashed line is the effective conductor diameter

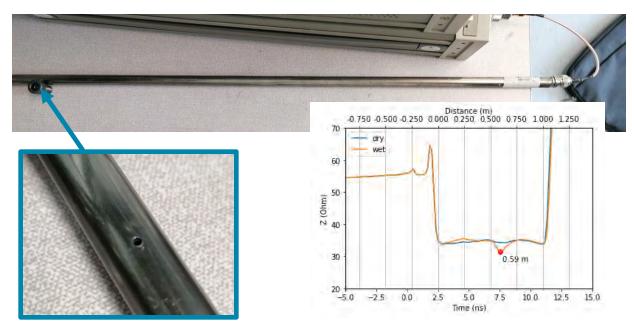
Equivalent circuit model for transmission lines

Transmission line impedance

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$


Factors influencing electrical properties:

- R and L: tendon and duct wall continuity, strand breakage
- G and C: water content and grout degradation

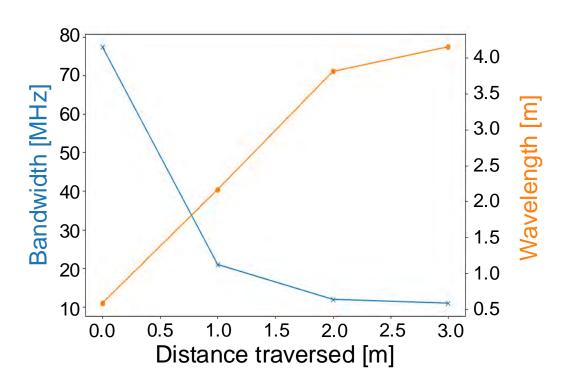

Proof of principle – Impact of discontinuities on electrical impedance

Effect of tendon corrosion:

5% increase in impedance for loss of a full strand – **cannot detect corrosion**

Effect of water ingress:

12% decrease in impedance with small defects – easier to locate defect?

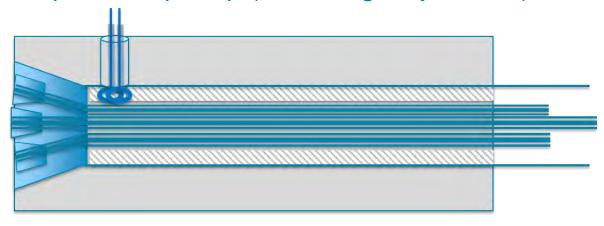


Proof of principle – Impact of grout on electrical impedance

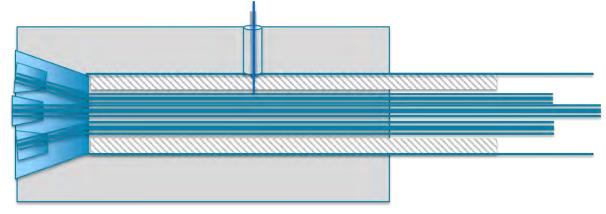
Grout is a lossy, low-impedance dielectric:

Dampens changes in impedance caused by water ingress vs. initial assessment

- Grout properties limit signal bandwidth to
 ~10 MHz limits defect location to ~1 m
- Fault detection and location relies on having a clear baseline for comparison



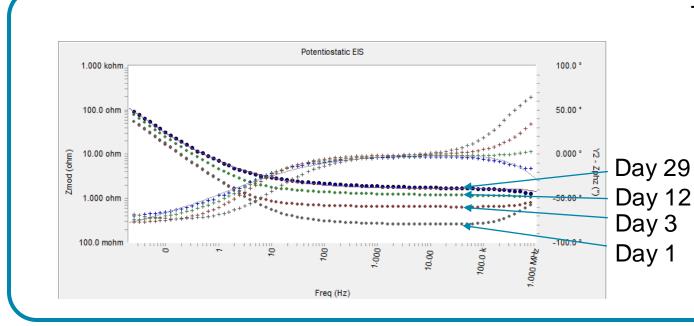
Electrical connection to the tendon


Retrofitting the system to a tendon requires exposing the tendon

- Signals can be induced with current loops (no direct contact to the tendon), but still require insertion underneath the duct
- Voltage signals require direct contact with duct and tendon

Loop drive & pickup (can be right by anchor):

Voltage drive & pickup (away from anchor):

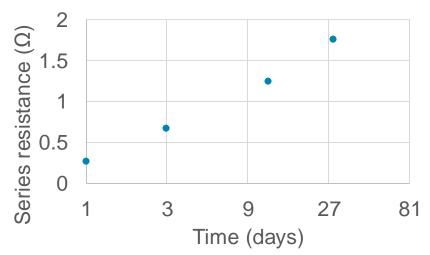


Conclusions and possible next steps

Fundamental limits are:

- Lower limit of detection
- Installation invasive method

No sufficient improvements over the status quo

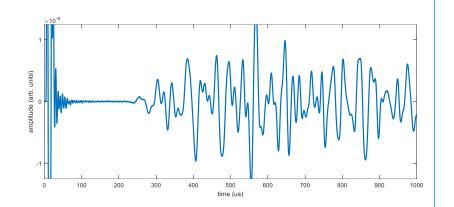

HOWEVER:

Electrical impedance is sensitive to **bulk** grout / concrete properties

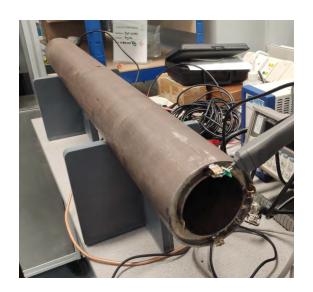
- Can monitor grout setting
- Could detect grout degradation

Possible use case?

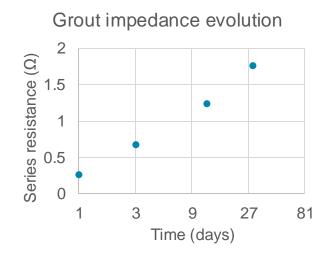
Grout impedance evolution



Overall conclusions


RF induced ultrasound

Successfully demonstrated US generation and detection in buried structures


Electrical impedance

Assessed performance and key limitations

Electrochemical impedance

Long term monitoring of bulk grout / concrete conditions

Please get in touch for feedback or questions!

Riccardo Di Pietro

Technical Director

riccardo.dipietro@xylem.com

Sentec

Radio House St Andrews Road Cambridge CB4 1DL United Kingdom

- **t.** +44 (0) 1223 303 800
- e. info@Sentec.co.uk

Agenda

1.

Technology Principles

4.

Second trials on the mockup beam

2.

Toddington Site Trials on Sample 3

5.

Findings from mockup beam

3.

Findings from Sample 3

6.

Development of MFT during the Structures Moonshot project

GScan

3D imaging technology of critical and hidden structures for critical structures in the built world (bridges, tunnels, nuclear, Oil & Gas

Established

Locations

2018

UK, DE, EE

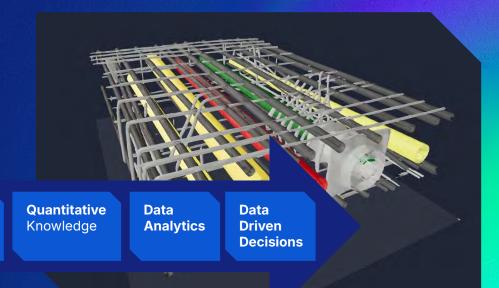
Team

40 Top talents incl 7 PhDs

Cambridge, UK

Tallinn, Estonia

Munich, DE


Tartu, Estonia

We want to transform the asset management principles

We can start putting more trust into the data of existing structures

- Spatially known locations
- More accurate deterioration models
- Reduced safety factors

Data

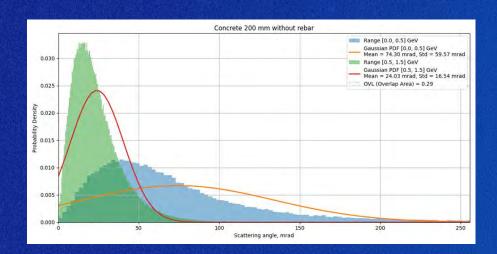
Clear Relationships **Probabilistic**Calculation
Model

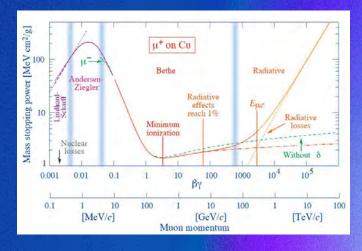
Real Behaviour

- Patented approach to detect low-z materials
- Commercialized production line first scanner was completed in March 2023
- Continuous hardware and software development
- Find the optimal deployment solutions measurements and service

Hodoscope set

6SCAN




Technology

Mouns have random direction and energy.

Materials are causing two phenomenon:

- Scattering
- Absorption

We are **6SCAN**

Scan anything.

Detect everything.

Tracking the muons

- Scintillation fibres react to charged particles
- Plastic enables lightweight and compact design
- Small size of the fiber enables good tracking resolution 0,1 mm and 1 mrad
- Three layers of detection media enables to filter out particles based on the energy range

Plastic Scintillating Fiber (PSF)

Tracks into data

Data readout is now performed using customised, home-made DAQ direct readout with strict-budget design condition.

SiPM-array

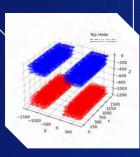
Front-end read-out board

An image of a three-detector plane tracker, an assembly of 6 fibre-mats

Data of value

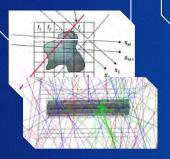
1.

Signal correction


Adjust/correct electronics signal.

2.

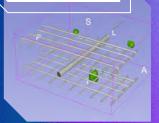
Alignment


Positioning to each-other.
Physical build imperfections.

3.

Reconstruction

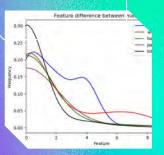
Fill 3D volume of interest with muons behaviour.



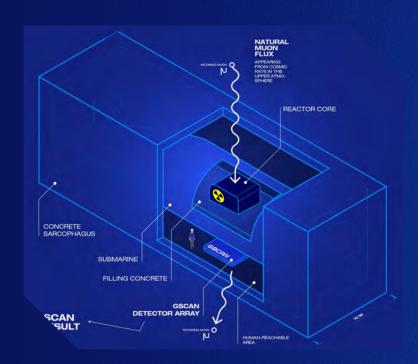
4.

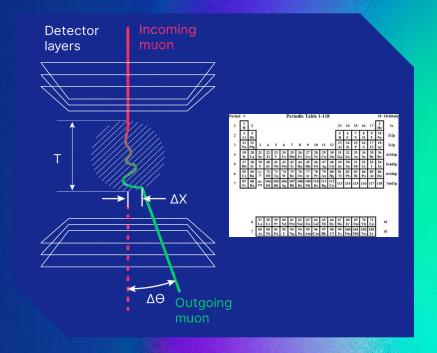
Object detection

Detect objects of interest.



5.


Materials analysis


Estimate the material properties.

Measurement principles

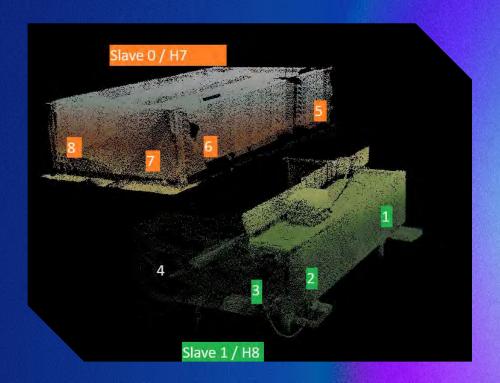
One sided - absorption of muons (only density)

Two (or more) sided - absorption and scattering of muons (density and atomic number)

Structures Moonshot Toddington

Measurements Oct - Nov 2023

Measurements Oct - Nov 2023


Total measurement time within 6 weeks

Position 1

- 220 h out of 456 h (19 days)
- Measurement efficiency 48,2%

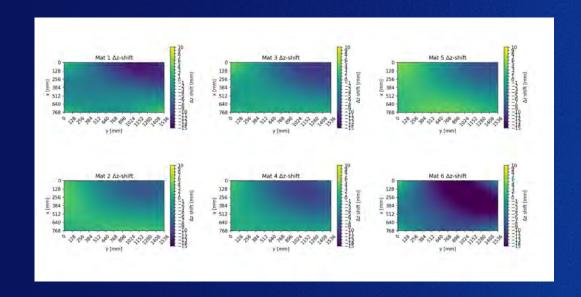
Position 2

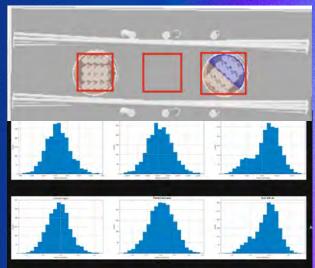
- 350 h out of 456 h (19 days)
- Measurement efficiency 76,8%

Measurements Oct - Nov 2023

Data processing was troublesome, but led us to ML alignment.

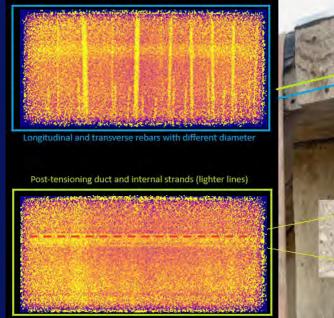
Results in December 2023

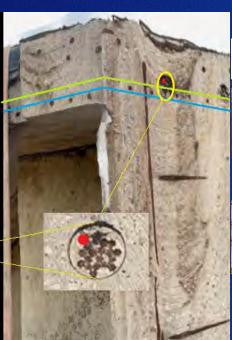

Improvements

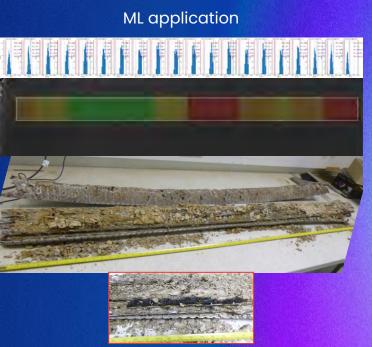

Dataset analysis and adjustment

More data 23M hits to 27M hits

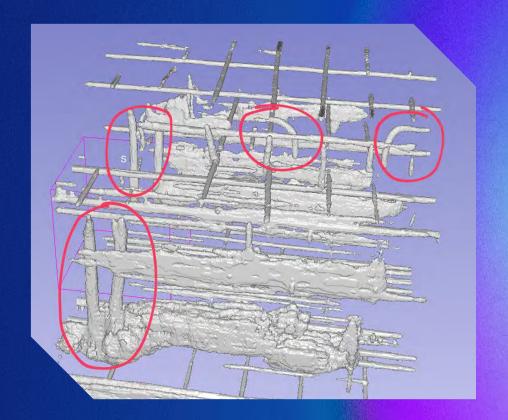
ML algorithms


First exploration of different scenes





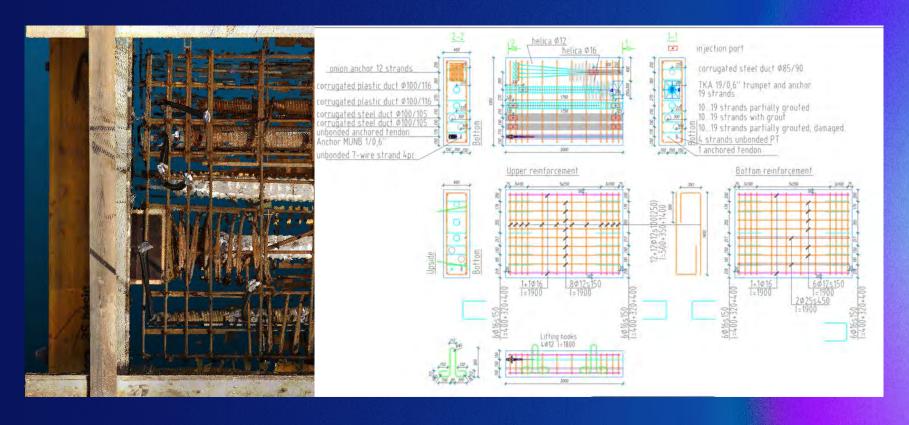
Results in April 2024



Improvements in ML algorithms

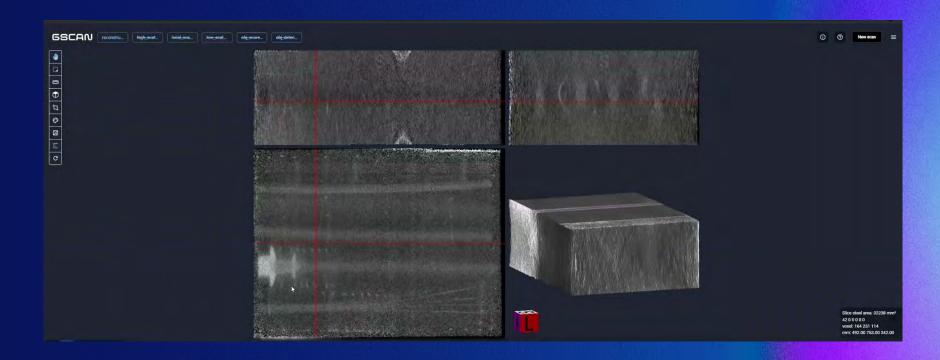
Algorithms were trained on multiple simulated scenes with meticulously defined ground truth data, enabling them to recognize various structures and potential defects within the steel.

Results in December 2024

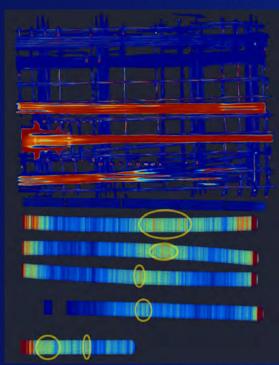


Structures Moonshot Tõrvandi

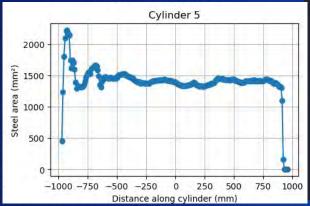
Mockup beam

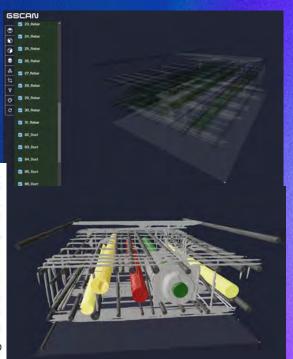


Measurements Nov 2024-Jan 2025



Results in February 2025





Results in February 2025

There are multiple ways to translate the data into information



Mockup beam - reality

Results in June 2025 - cuts

GSCAN

Results in June 2025 - missing grouting

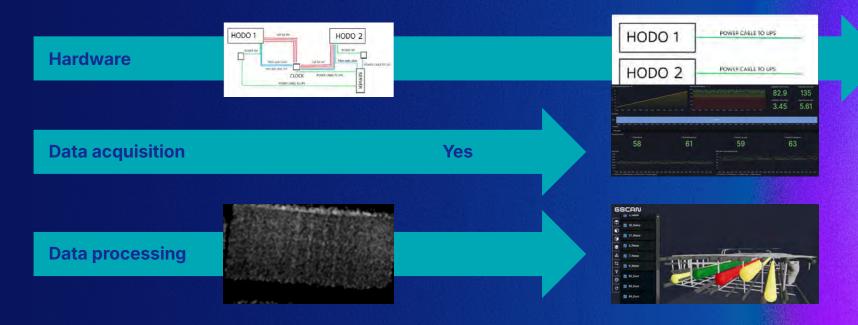
GSCAN

Results in June 2025 - steel in PT ducts

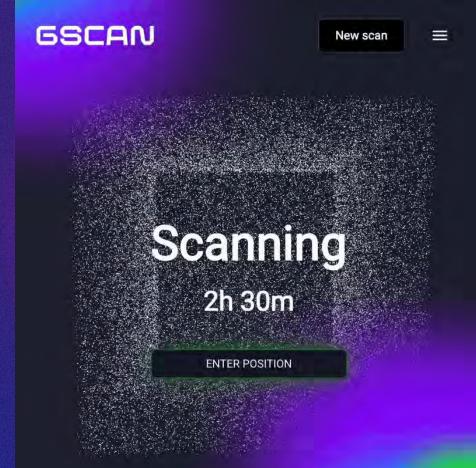
Designed vs. determined (average)

Plastic with 19 strands 2850 mm² vs 2600 mm²
Plastic with 16 strands 2400 mm² vs 2192 mm²
Steel with 19 strands 3655 mm² vs 3583 mm²
Steel with 12 strands 2190 mm² vs 1855 mm²

~10% underestimation, but getting closer



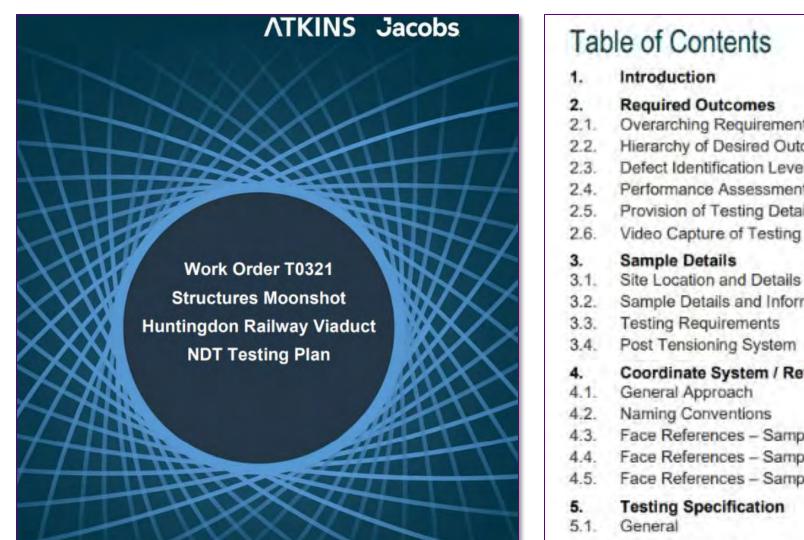
Structures Moonshot Muon Flux Development


Rapid Technology Development (TRL6->TRL8)

First scanner was ready in March 2023 - now we have 20 + First bridges already scanned

Thank you! Questions?

erminate scanning


Complete scanning

Output Focused Specification

Specialist Professional & Technical Services 2 (SPaTS 2)

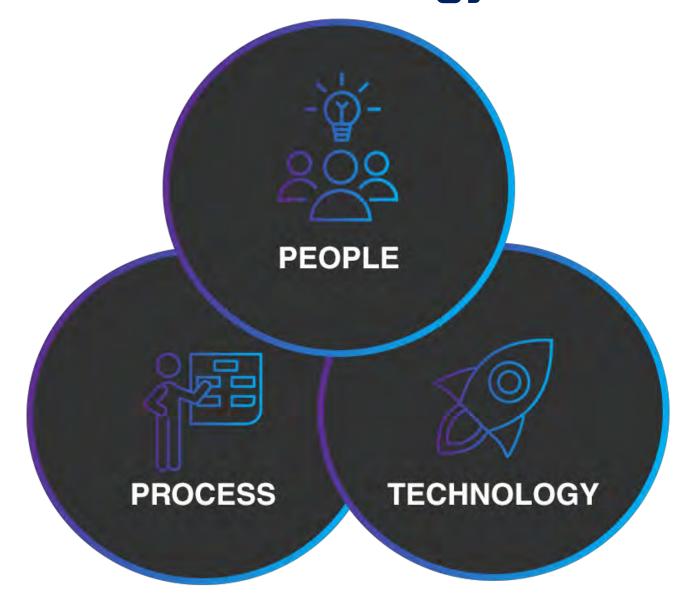


Table of Contents

- Overarching Requirements
- Hierarchy of Desired Outcomes
- Defect Identification Level of Confidence
- Performance Assessment
- Provision of Testing Details by Testing Service Providers
- Video Capture of Testing and Apparatus
- Sample Details and Information
- Testing Requirements
- Post Tensioning System
- Coordinate System / Referencing
- Face References Sample 1
- Face References Sample 2
- Face References Sample 3
- **Testing Specification**
- **Testing Outputs**
- General
- Deliverables

People, Process & Technology

Hierarchy of Testing Outcomes

Hierarchy Level	Description		ability	Value
1	Locating and identifying physical properties	HJ	PT	
1.1	Locate the strands and/or the rebar approximately	✓	✓	
1.2	Identify sizes of strand and/or rebar	✓	✓	
1.3	Identify duct type		✓	
1.5	Map all strands and rebar completely and accurately – position and sizes (stretch target)	✓	✓	
1.6	Identify chemical and physical properties of the materials (e.g. Section 3.7.5 and 3.7.6 of <u>CS 465</u>)	~	✓	
2	Conditions for corrosion			
2.1	Locate any absence of duct grouting		✓	
2.2	Identify areas where the reinforcement is at high risk of corrosion, <u>e.g.</u> loss of concrete passivation or high chlorides	~	~	
2.3	Identify areas where the tendons are at high risk of corrosion, <u>e.g.</u> loss of concrete passivation or high chlorides		>	f Data
3	Indications of damage			0
3.1	Identify discontinuities in reinforcing and/or prestressing steel that may be indicative of corrosion or breakages	~	\	Increasing Value of Data
3.2	Identification of plastic deformations of reinforcement (e.g. necking)	✓		reasir
3.3	Measurement of surface cracking at re-entrant corners (width, length, depth)	~		lnc
3.4	Measurement of cracking along length of re-entrant corners (width, length, depth)	~		
4	Pinpoint location and quantify magnitude of det	eriorati	on	
4.1	Corrosion locations	✓	✓	
4.2	Magnitude and shape of section loss from corrosion at each location	~	>	
4.3	Wire break locations		\	
4.4	Number of wire breaks at each location		√	
5	Other behaviour to detect if possible			
5.1	Bond slip between steel and concrete (should have occurred at least in cutting samples)		✓	
5.2	Re-anchoring of strands (should have occurred at least in cutting samples)		✓	ţ

Type of test	Activity/Test Type
Mechanical Wave	Acoustic Emission Monitoring (AEM)
Optical	Initial visual inspection
Electromagnetic	Covermeter survey
Optical	Hyperspectral Imagery
Particle sensors	FTIR hydrogen gas monitoring
Optical	Portable X-Ray (PTX)
Electromagnetic	Chloride mapping
Mechanical Wave	Anchorage guided wave
Mechanical Wave	Advanced Impact Echo
Electromagnetic	Ground Penetrating Radar (GPR)
Optical	Infra-red thermography (IRT)
Electrochemical	Half Cell Potential Survey
Magnetic	Magnetic Flux Leakage (MFL)
Mechanical Wave	Joint fracture evaluation
Mechanical Wave	Advanced ultrasonics (ELOP & Pundit)
Electromagnetic	GSSI StructureScan Mini (GPR)
Core sampling	Chloride core samples
Electrochemical	Electrical resistivity
Optical	DIC (during demolition)
Optical	Demolition & inspection

Expected Testing Outcomes

Testing Method																	
			16	sting	Metn	oa											
Investigation Process	Cover meter Survey	Hammer Tapping	FTIR Gas Monitoring	Hyperspectral Imaging	Digital Image Correlation	Infrared Thermography	Advanced Impact Echo	Chloride Mapping	GPR	Magnetic Flux Leakage	GSSI Scan	Joint Fracture Evaluation	Advanced Ultrasonics	Anchorage Guided Wave	Half Cell / Resistivity	Portable XRay	Muon Tomography
	ı	_ocating	g and ld	entifyin	g the In	ternal E	lements	S									
Can the method be used to locate:																	
Rebar (position, size, layout)																	
Ducts and Tendons																	
Duct and Tendon Types																	
Voids within the grout/duct																	
Voids in the Concrete																	
Condition	ons for	Corrosi	on (i.e.,	loss of c	oncrete	passiva	tion/high	chlorid	es/other)							
Can the method be used to determine is the conditions of corrosion are	e preser	t includi	ng the ic	dentificat	ion and	classific	ation of	high rist	areas	at:							
Rebar Locations																	
Tendon Locations)																	
		I	dentific	ation of	Discon	tinuities	3										
Can the method be used to identify and locate:																	
Discontinuities or plastic deformation in rebar (corrosion, necking or breakages)																	
Discontinuities in tendons (corrosion or breakages																	
			Identifi	cation o	f Deter	oration											
Can the method be used to identify and locate:																	
Corrosion locations																	
Degree of section loss																	
			(Other Be	haviou	r											
Can the method be used to identify and locate:																	
Detect Bond Slip between tendon / Grout																	
Detect Re-anchoring of strands																	
Other																	

What to define?	Reference	Example
A particular <u>Sample</u>	а	Sample 2 (Sample two)
A particular sample's <u>face</u> where the NDT test was applied	a.b	Face 3.B (Face B of Sample three)
		Survey Point 1.B.200.300.300
The coordinates of the <u>survey point</u> as an x,y,z	a.b.x.y.z	(A location at x,y,z 200,300,300 for sample 1, as recorded from Face B)
A tendon within a particular test piece	a n	Tendon 2.3
A <u>teridori</u> within a particular test piece	a.n	(The third tendon in test sample two)
A chainege along a tondon measured with Face B	a n m	Tendon 2.3.500
A chainage along a tendon measured with Face B	a.n.m	(500mm along the third tendon on sample 2)

where

a can be 1, 2 or 3 b can be A, B, C, D, E or F x, y, z are dimensions (+ve or -ve) in mm n can be 1, 2, ... m is a dimension (+ve) in mm

Notes:

- 1. x, y and z coordinates are measured from the origin of the sample, as described in Section 5.6 of this document. Dimensions can be positive or negative depending on the position of the defect.
- 2. Tendon chainages are measured from Face B refer to Sections 5.6. Tendon chainages will always be positive measurements.

Defect Identification Level of Confidence

High

- Survey data clearly be interpreted as a specific condition or defect
- High degree of confidence.
- Extent of the defect/observation can be clearly defined to within +/- 50mm

Medium

- Survey data indicates a specific condition or defect,
- However, this could also be interpreted in several different ways.
- Extent of the defect/observation can be defined to a resolution of +/- 100mm

Low

- Survey data indicates a point of interest,
- Exact cause/condition cannot be identified.
- Boundaries of defect/observation resolution cannot be guaranteed to an accuracy of 300mm or less

Performance Assessment (Project Team)

- Finding the most defects, confirmed via hydrodemolition.
- Providing a favourable true-positive to false-positive call ratio.
- Providing a favourable true-negative to false-negative call ratio.
- Providing additional information of value, e.g. tendon position, chloride distribution.
- The operators' confidence in their own findings.

Testing Undertaken

Test Type ▼	Equipment	Scope	Providor
Dust Sampling (Chloride Reference)	N/A	Original Spec	VSL, Bridgology
Tapping	N/A	Original Spec	CTS
Cover meter Survey	Elcometer 331 Cover Meter	Original Spec	CTS
Electrical Resistivity	Proceq Resipod	Original Spec	CTS
GPR	Proceq GP8000	Original Spec	VSL, Bridgology
GPR	Proceq GP8800	Additional Test	Screening Eagle (via Mistras)
GPR	Proseq GP8000	Additional Test	Screening Eagle (via Mistras)
Joint Fracture Evaluation	Bespoke	Original Spec	Screening Eagle (via Mistras)
Ultrasonic Pulse Echo (Concrete)	Proseq PD8050	Original Spec	Screening Eagle (via Mistras)
Impact Echo	Proseq PI8000	Original Spec	Mistras
Anchorage Guided Wave	Bespoke	Additional Test	Mistras
Acoustic Emissions	Bespoke	Additional Test	Mistras
FTIR Gas Monitoring	Gasmet GT5000 Terra Portable Gas Analyser	Original Spec	RAU
Hyperspectral Imaging	Hyperspectral Camera (400 - 1000nm wavelength)	Original Spec	University of Bristol (via RAU)
Field Spectromatry	Spectral Evolution RS3500 Field Spectrometer (350 - 2500nm wavelength)	Additional Test	Pro-Lite Technology (via RAU)
Raman Spectophacy	Wasatch Photonics 785nm Raman Spectrometer	Additional Test	Pro-Lite Technology (via RAU)
Gamma Ray Spectomatry	ImiTec ARARM Gamma Ray Sensor	Additional Test	RAU
Portable Xray Flourescence (PXRF)	ThermoFisher Niton XL3t GOLDD+ analyser	Original Spec	RAU
Ultrasonics (Concrete)	ELOP	Additional Test	Allied Associates (via Mistras)
GPR	GSSI Flex NT	Original Spec	Allied Associates (via Mistras)
GPR	GSSI Structure Scan Mini XT	Additional Test	Allied Associates (via Mistras)
GPR	Proseq GP8000	Open Invite	Screening Eagle
GPR	Proseq GP8800	Open Invite	Screening Eagle
Half-cell potential survey	Proseq Profometer Corrosion	Open Invite	Screening Eagle
Visual Inspection	Haushote 1080n/20v ontical zoom	Additional Test	HausRote VTC

MOONSHOT – Huntingdon Railway Viaduct NDT Trials at M1 National Highways Toddington Yard

Jon Watson and Tim Bradshaw – MISTRAS

Markus Denton-Masih and Shirley Underwood – Screening Eagle

James and Norman Bell – Allied Associated Ltd (distributors of Elop and GSSI)

16th June 2025

The Studio, 7 Cannon Street, Birmingham B2 5

MISTRAS - WHO WE ARE

- Global non-destructive testing, inspection and monitoring company, founded in 1985.
- 5,000 staff (\$750M USD/2024) globally / 55 staff (£8M GBP/2024) in the UK.
- Highly accredited and certified company carrying out infield inspection and monitoring services.
- Leader in development of applications and in the use of advanced inspection technology for Hidden Critical Elements (HCE).
- Active participant in industry working groups.

2017 2017 2020 2022 2022

MOONSHOT – Huntingdon Railway Viaduct NDT Trials - Inspection techniques

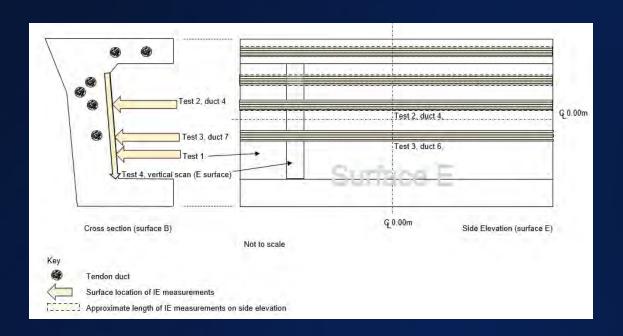
- MISTRAS contracted by VSL (for AtkinsRéalis-Jacobs JV) to evaluate several advanced NDT techniques on A14 HRV samples.
- MISTRAS collaborated with instrumentation manufacturers to best apply the technologies.

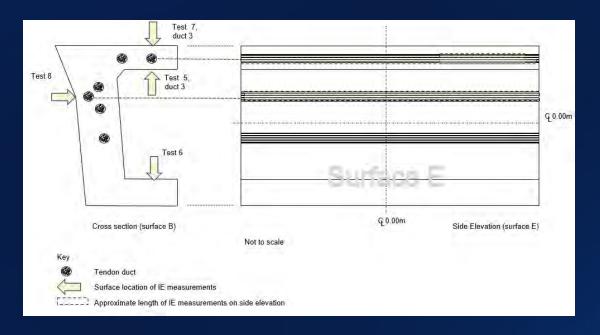
ID	Inspection / Monitoring Technique	Instrument Manufacturer	System Name	Testing By	
1	Impact Echo (IE)	Impact Echo Impact Echo Rev 3 Instruments Ltd, USA		MISTRAS	
2	Rolling Ultrasonic Tomography	Elop Technology Insight		MISTRAS / Allied Associates	
3	Ground Penetrating Radar (GPR)	Screening Eagle / GSSI	GP8000 (S.E.) / Mini- XT & Flex-NX	Allied Associates / Screening Eagle	
4	Ultrasonic Pulse Echo	Screening Eagle	Pundit PD8050	MISTRAS / Screening Eagle	
5	Ultrasonics of Wires	MISTRAS	TabletUT™	MISTRAS	
6	Acoustic Emission	MISTRAS	Express8 AEwin TM	MISTRAS	

1 - Impact Echo – Technology Overview

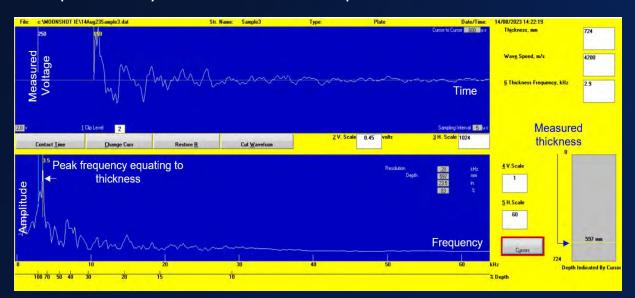
MISTRAS

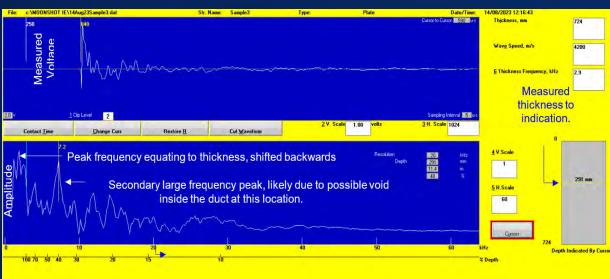
- The Impact Echo (IE) test uses an impact generated stress waves propagating through concrete and being reflected by internal flaws and external surfaces.
- Stress wave generated through impact of a small steel ball (4-10mm diameter) on the concrete surface.
- Transducer placed adjacent to the impact site records the surface vibrations.
- Displacement v time waveform is converted to plots of amplitude vs frequency.
- These are evaluated to establish the presence and depth of the reflective indication.
- The technique is used across the world to detect voids in concrete and PT ducts.

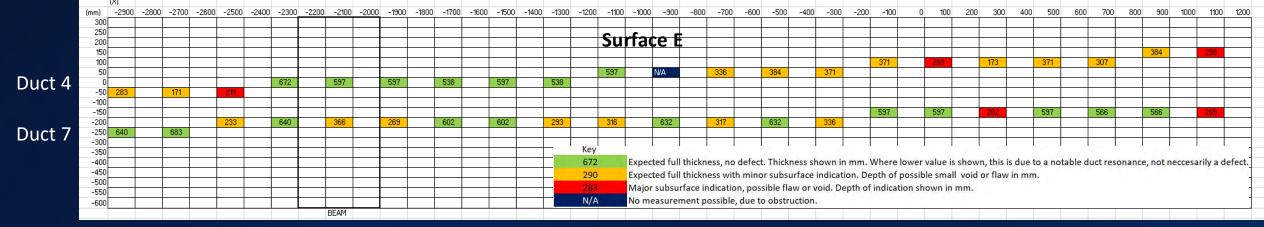



1 - Impact Echo - Trials and Testing

- GPR used to detect and mark out the duct location.
- IE is easy and quick to operate, ~40m of duct tested in ~4hrs.
- Point measurement every 200mm along the duct.
- Simple data with minimal processing.
- Written procedures for manual signal analysis.




1 - Impact Echo - Key Results and Outputs

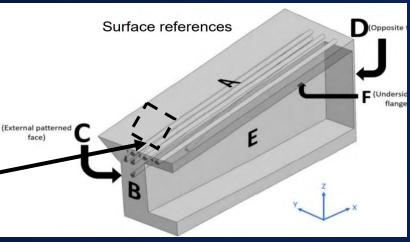
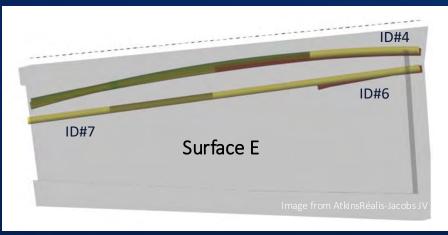

MISTRAS

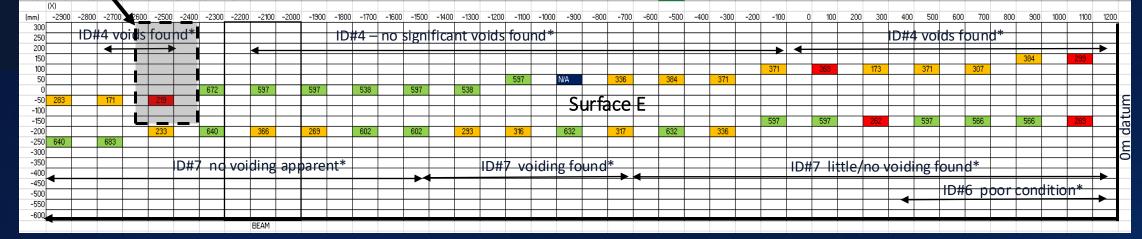
Example of likely <u>defect free</u> duct test point

Example of likely **voided** duct at a test point

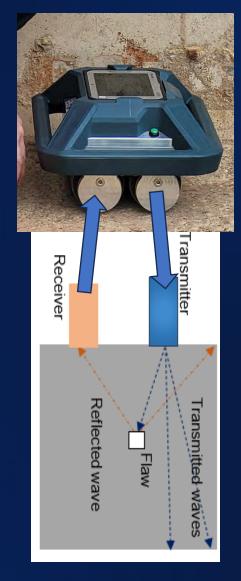
Linear length of sample – web surface E

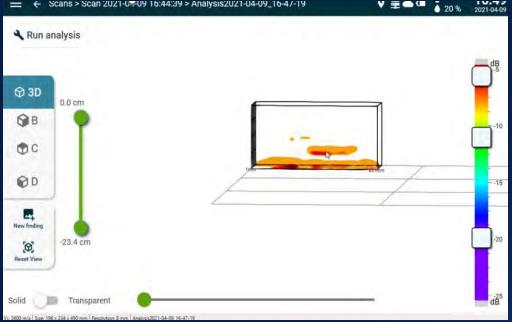
1 - Impact Echo - Comparison of Results Against Actuals

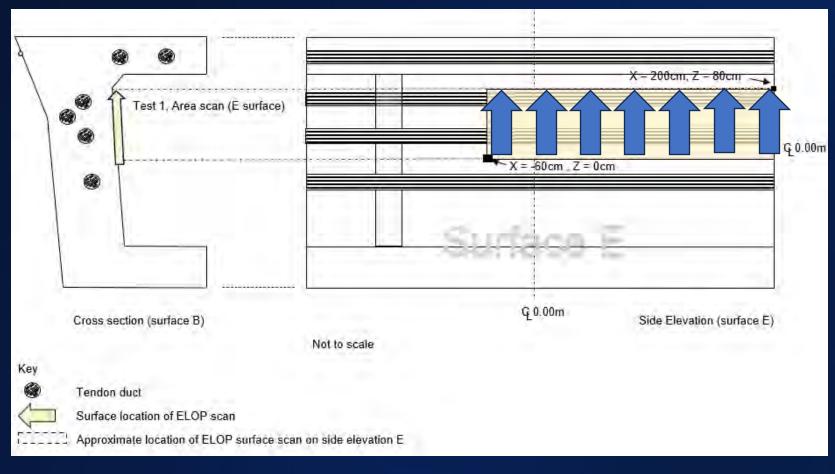

Image from AtkinsRéalis-Jacobs JV

Note – tendon position shown is slightly elevated vs reality.


Duct 7

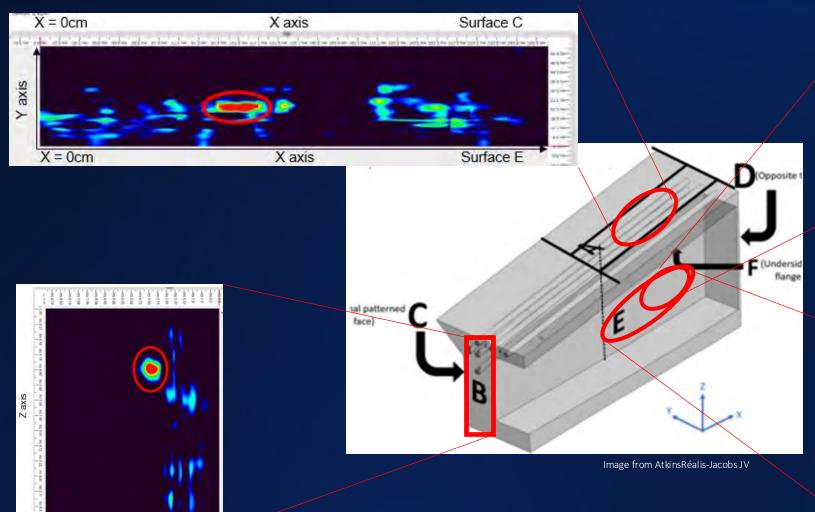

2 – Rolling Ultrasonic Tomography – Technology Overview

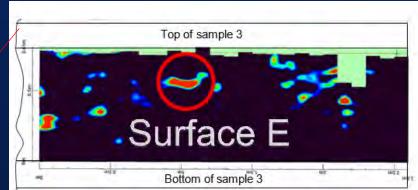
- Insight system, by Elop Technology.
- Dry-coupling rolling ultrasound using low frequency pressure wave signals with pulseecho transducers.
- Comprised of tablet and scanner.
- Records and displays 2D & 3D data in real time.
- Cover large areas quickly, from 20cm to 100cm per second, depending on speed mode.
- Concrete and structural application areas include measurement of thickness, detects voids, delamination, debonding, tendon ducts, honeycombing etc.

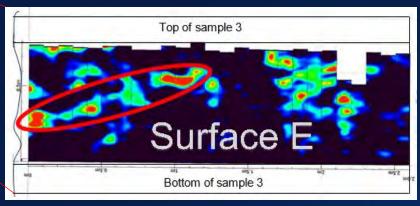


2 - Rolling Ultrasonic Tomography - Trials and Testing

- Duct locations are found with GPR and marked out.
- A linear scan was carried in vertical strips (500m wide), then stitched together to form an image of the ducts in the web.

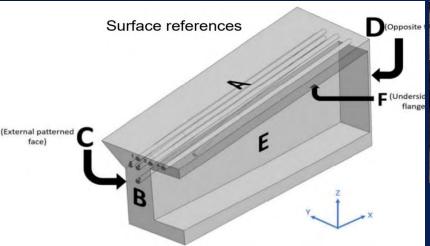
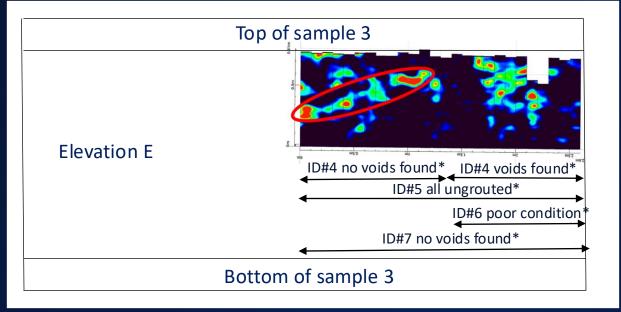
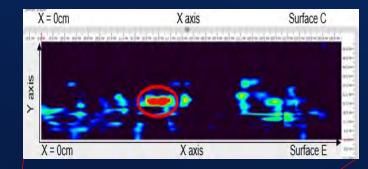





2 – Rolling Ultrasonic Tomography – Key Results and Outputs

• Suspected voids are shown in various tomography views.

2 – Rolling Ultrasonic Tomography – Comparison of Results Against Actuals

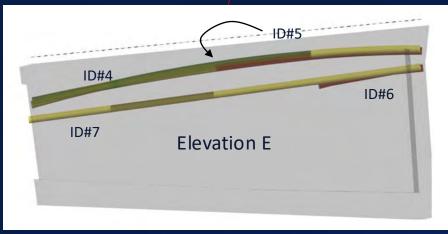
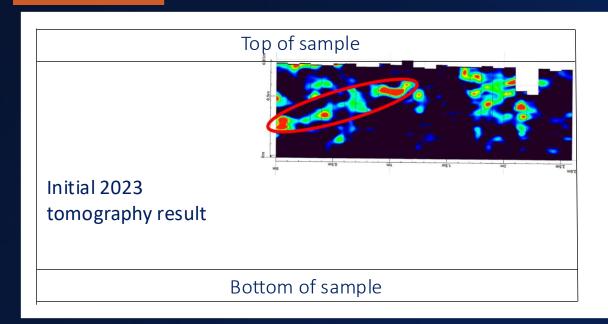
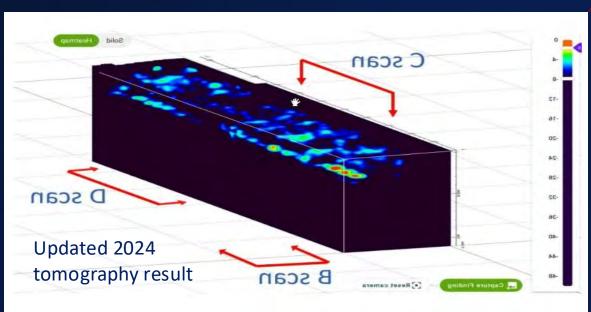
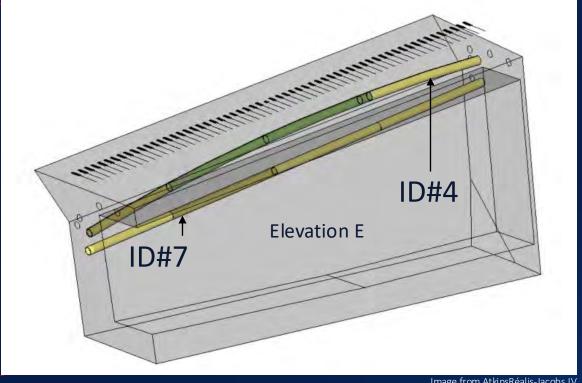


Image from AtkinsRéalis-Jacobs JV


*Ducts are longer than sample, so correlation is approximate.

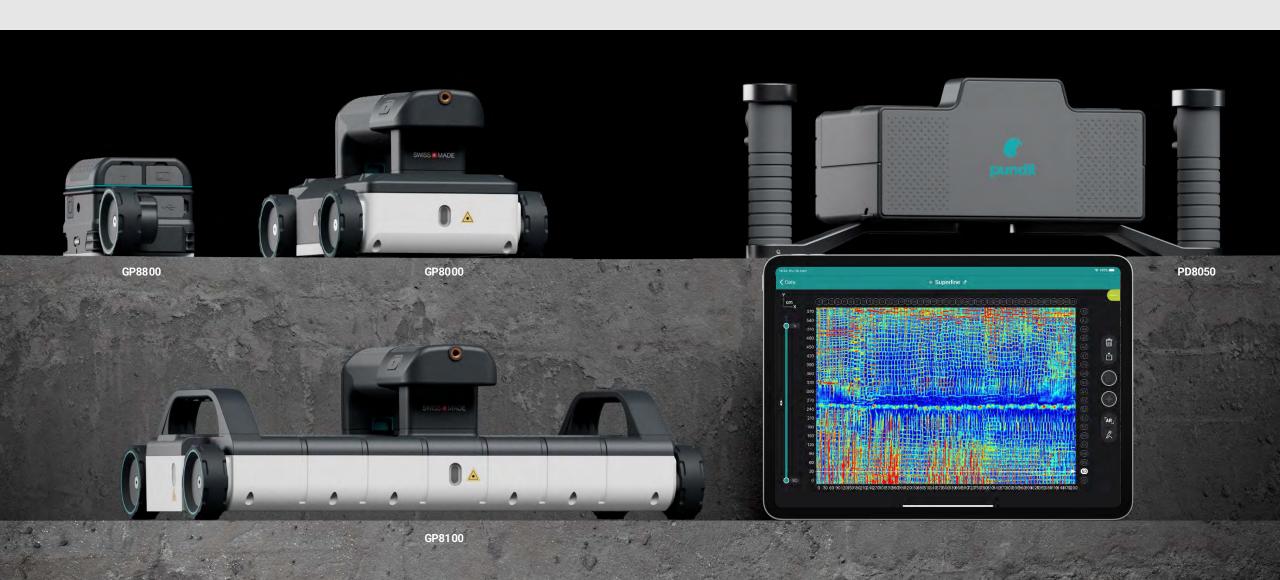



2 - Rolling Ultrasonic Tomography - Further Development of Technology

- Updated Insight software allowing updated 3D view of results.
- More visual result, which is better correlated with Atkins findings.

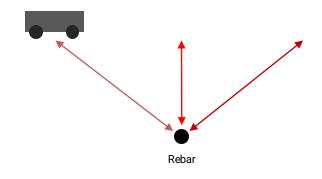
MOONSHOT – Huntingdon Railway Viaduct NDT Trials - Inspection techniques

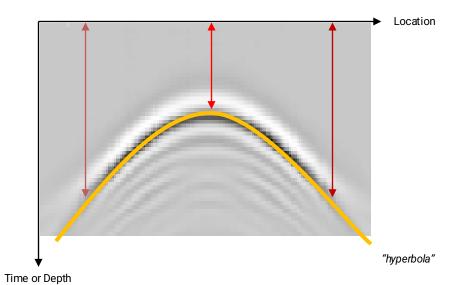
ID	Inspection / Monitoring Technique	Instrument Manufacturer	System Name	Testing By
1	Impact Echo (IE)	Impact Echo Instruments Ltd, USA	Impact Echo Rev 3	MISTRAS
2	Rolling Ultrasonic Tomography	Elop	Insight MIS Asse	
3	Ground Penetrating Radar (GPR)	Screening Eagle	GP8000	Screening Eagle
4	Ultrasonic Pulse Echo	Screening Eagle	Pundit PD8050	MISTRAS / Screening Eagle
5	Ultrasonics of Wires	MISTRAS	TabletUT™	MISTRAS
6	Acoustic Emission	MISTRAS	Express8 AEwin TM	MISTRAS

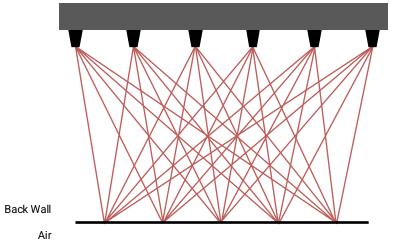


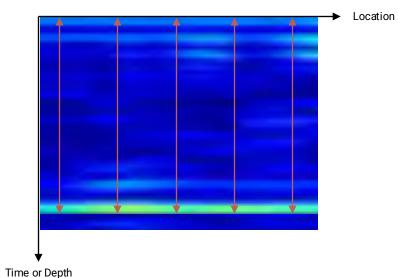

Markus Denton-Masih

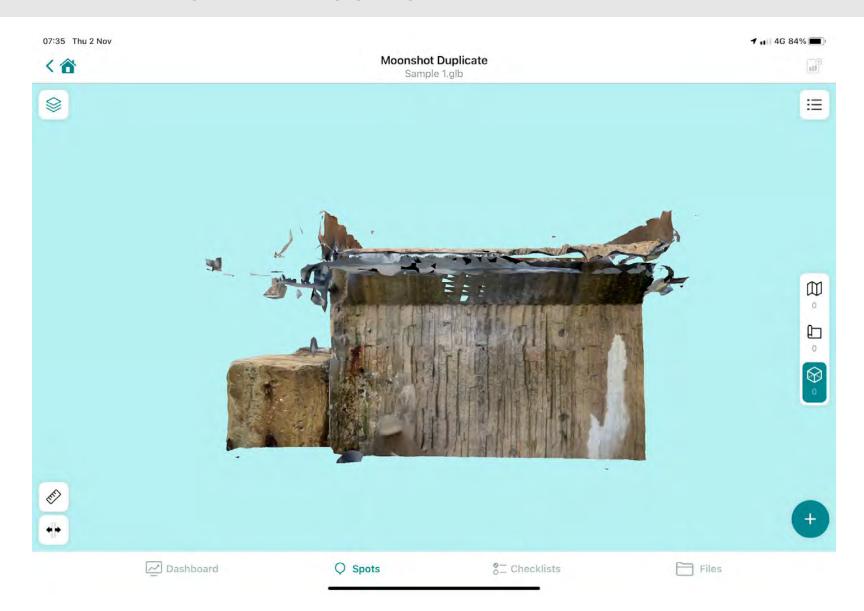
Solutions Consultant

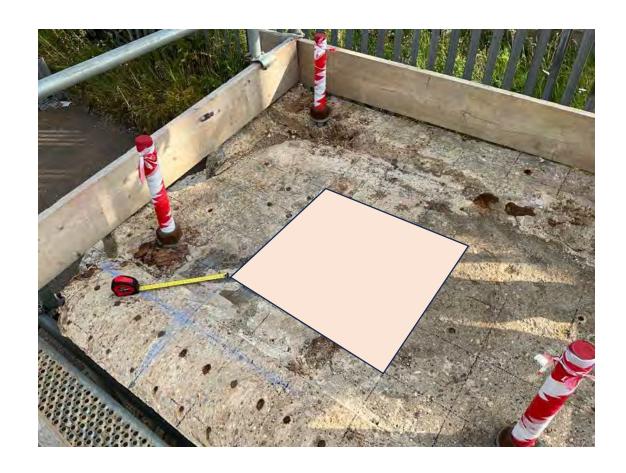

Ground Penetrating Radar & Ultrasound Pulse Echo




Ground Penetrating Radar & Ultrasound Pulse Echo

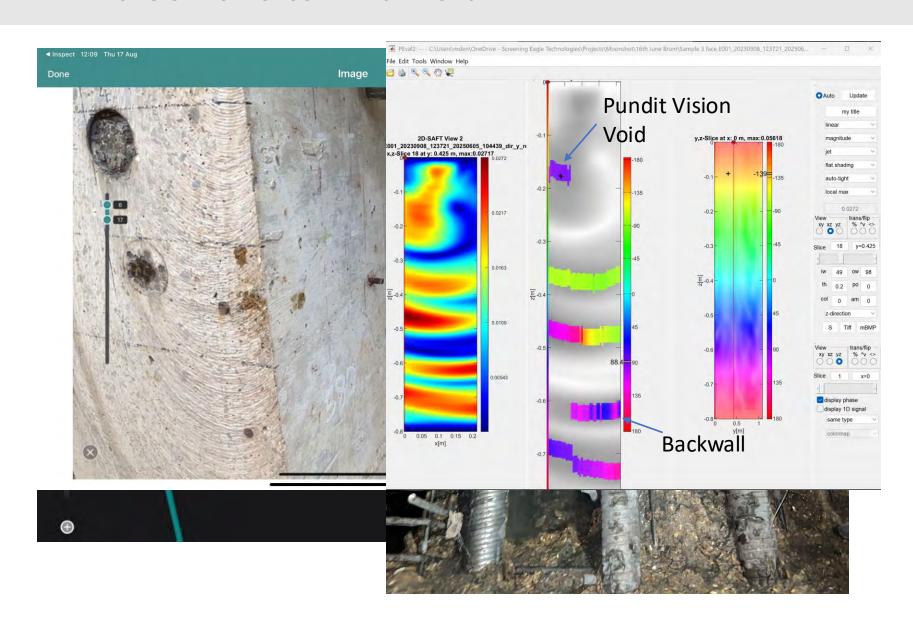

GPR (Radio Wave)


Ultrasound Pulse Echo

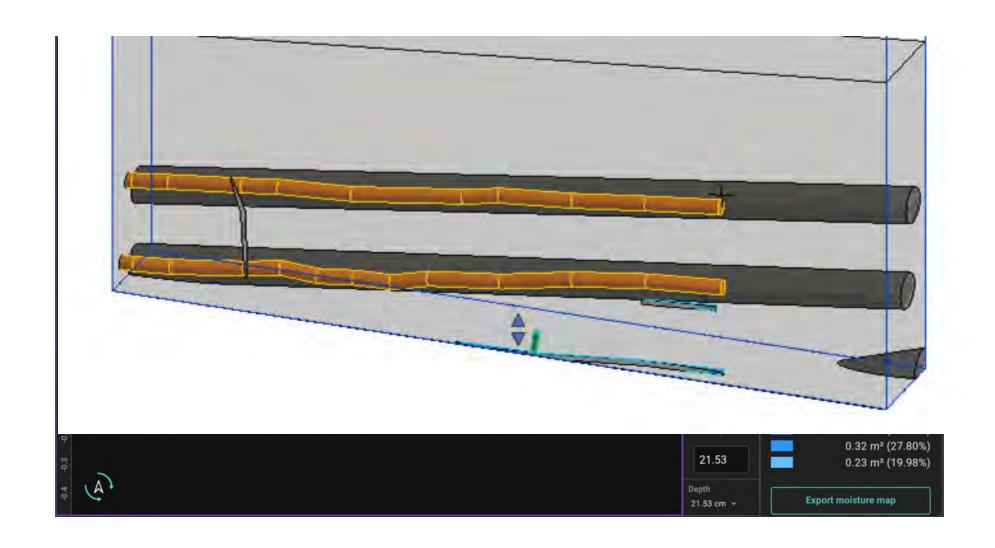


Onsite Data recording and Logging

GPR Findings



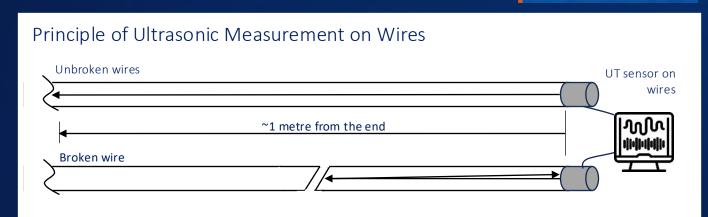
Rebar placement defect



Pulse Echo to Find Void

GPR for Reinforcement

MOONSHOT – Huntingdon Railway Viaduct NDT Trials - Inspection techniques



ID	Inspection / Monitoring Technique	Instrument Manufacturer	System Name	Testing By
1	Impact Echo (IE)	Impact Echo Impact Echo Rev 3 Instruments Ltd, USA		MISTRAS
2	Rolling Ultrasonic Tomography	Elop	Insight MISTRAS Associate	
3	Ground Penetrating Radar (GPR)	Screening Eagle / GSSI	GP8000 (S.E.) / Mini- XT & Flex-NX	Allied Associates / Screening Eagle
4	Ultrasonic Pulse Echo	Screening Eagle	Pundit PD8050	MISTRAS / Screening Eagle
5	Ultrasonics of Wires	MISTRAS	TabletUT™	MISTRAS
6	Acoustic Emission	MISTRAS	Express8 AEwin TM	MISTRAS

5 – Ultrasonics of Wires – Technology Overview

MISTRAS

- The test technique uses a probe mounted to the exposed end of a wire which pulses a special signal generated by an Ultrasonic system (Pulse Echo).
- Inspects from 0.0m < ~1m length of a wire (variable) for wire breaks.
- Trial for quantification and validation is important.
- The ultrasonic signal travels down the wire to ~1m from the probe and any signals that are reflected from strand/wire defects or material interfaces are captured and recorded by the same probe and system.
- Software and analyses procedure is used to evaluate the received data for evidence of indications.

Example of testing on anchorage wires

Wire with likely break at 180mm

5 – Ultrasonics of Wires – Trials and Testing

MISTRAS

- Testing carried out on Sample 1.
- Wires are sanded flat.
- Wires tested 1 by 1, with 5mm diameter probe.

Ultrasonic testing

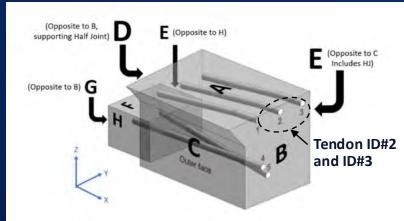
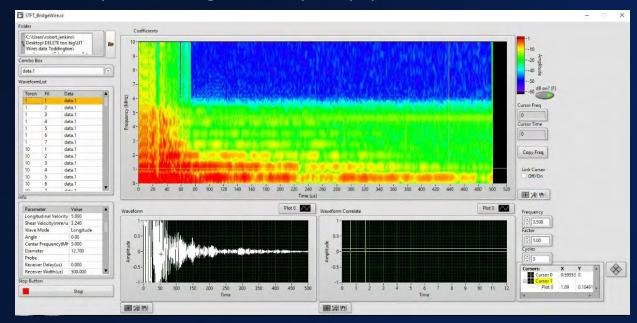


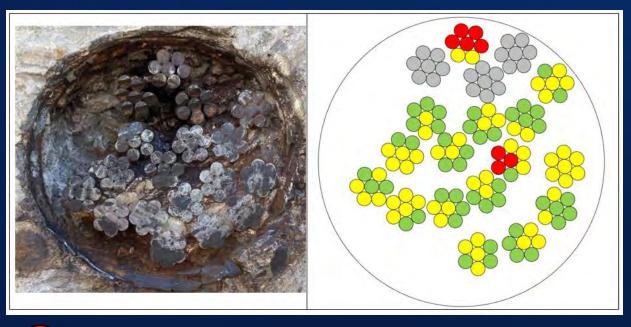
Image from AtkinsRéalis-Jacobs JV

Sample ID 1 and tendon ID's

Sensor on wire



Tablet UT system


5 – Ultrasonics of Wires – Key Results and Outputs

• Example of raw sign and frequency spectrum from 1 wire

Example of reporting format

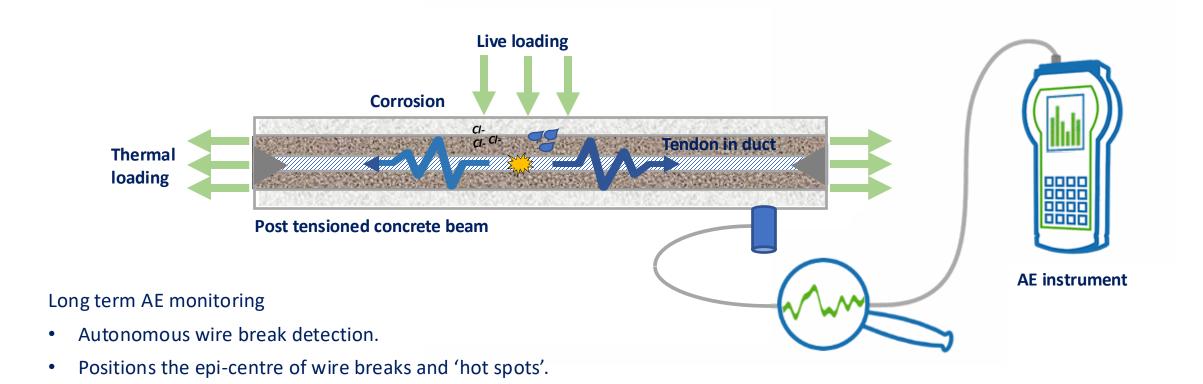
Comparison of UT Results vs Investigation

Poor correlation!

5 – Ultrasonics of Wires – Further Development of Technology

- Wire testing of removed anchorages taken from HRV sample 1
 - with grout
 - without grout
- Improve the procedure for ultrasonic testing for future works.

Image from AtkinsRéalis-Jacobs JV

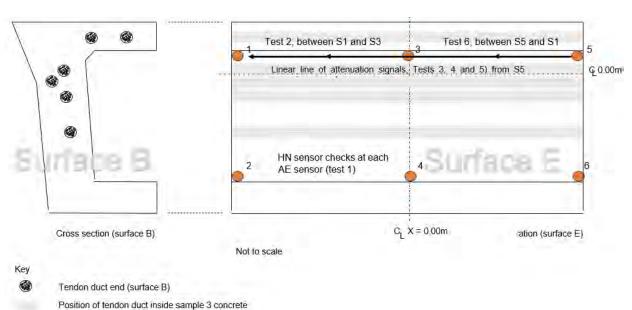

6 – Acoustic Emission – Technology Overview

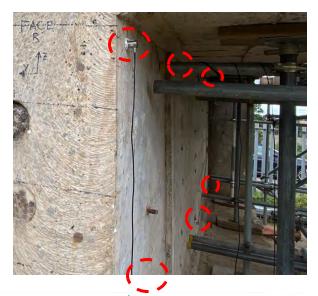
Enables 100% volumetric condition monitoring of PT systems.

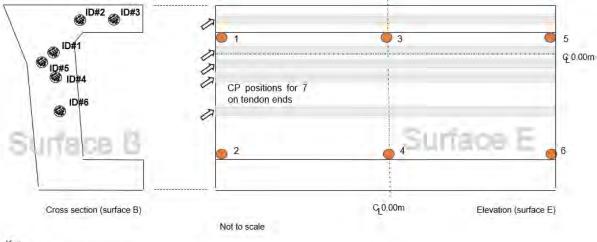
"Acoustic emissions are transient elastic waves generated by the rapid release of energy from localized sources within a material" reference: ASTM E1316

Wire breaks caused by deterioration of tendons inside post tensioned concrete create AE shock waves that are detected by surface mounted AE sensors which are fixed every 5-10m to structures.

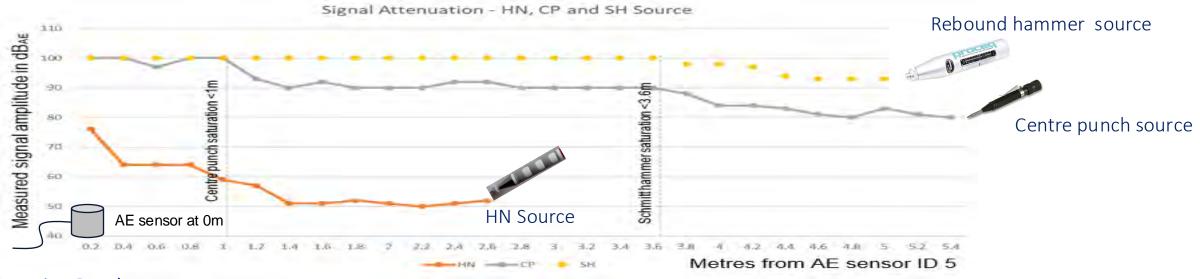
Copyright © 2025 MISTRAS Group, Inc. All rights reserved


6 - Acoustic Emission - Overview of Trials and Testing


- AE monitoring is passive so testing used simulated wire break source – spring loaded impactor.
- AE sensors are mounted on concrete surface and cabled to a MISTRAS Express-8 AE system for measurement.
- Simulated wire breaks made on concrete surface and exposed (de-tensioned) cable ends.


Centre punch on concrete surface E

 AE source location and signal characterisation carried out the specimen (using simulated wire break source).

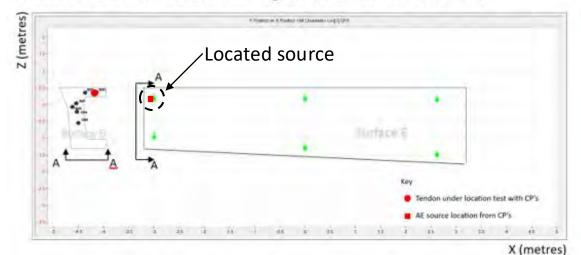


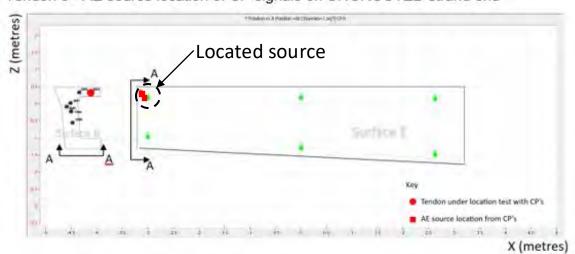
6 – Acoustic Emission – Key Results and Outputs

Location Results

AE source location of CP signals on concrete surface. Centre punch source Located centre punches at 200mm intervals

Source characterisation


6 – Acoustic Emission – Key Results and Outputs


Location Results

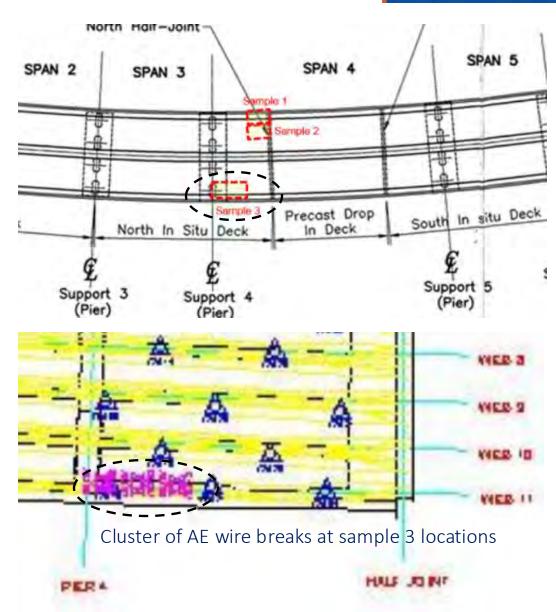
Results

Tendon 3 - AE source location of CP signals on GROUTED strand end

Tendon 3 - AE source location of CP signals on UNGROUTED strand end

Tendon ID 3 on Surface B

Duct ID#3 found to be part (1/2) grouted along whole length.


6 – Acoustic Emission – Comparison of Results Against

- MISTRAS simulated wire breaks on Sample 3 were accurately located to within +/-10cm and discernible from other sources of noise.
- Pure Technologies AEM of HRV between 1998 to 2020 detected 52 wire breaks, 28 in Zone 2 of which around 15 are near/at Sample 3*. *with a reported location 'inaccuracy of in excess of 1m'.
- During Atkins Réalis partial duct investigations, broken wires were found within the specimen, with multiple breaks found concentrated in duct 6.

Table 3.1. Wire break events from May 1998 to March 2020 from TRL report

Location	Wire Break	Possible Wire Break
Zone 1	2	0
Zone 2	28	4
Zone 3	-5	4
Zone 4	2	1
Zone 5	15	1
Zone 6	0	0
Overall	52	10

6 – Acoustic Emission – Further Development of Technology

MISTRAS

- AEwin64 software enhanced performance and upgraded graphics.
- New MicroSHM 4 channel AE system for low cost AE monitoring.
- Publishing of wire break best practise guides to assist bridge owners.
- 9 new post tension AE wire break projects since 2023, adding further industrial experience.

Summary

- The application of advanced NDT and AE monitoring has been effectively demonstrated.
- There was correlation between NDT results and forensic investigation of grouting in the ducts.
- GPR is essential in locating rebar and duct locations, prior to other testing.
- *Impact Echo* is 'simple' and reliable with a valuable role to play in void detection.
- Advanced ultrasonic NDT provides detailed information on duct voids interpretation and display of data requires greater care.
- Practical testing work benefits from battery powered, light weight, robust and well designed systems.
- The original **Acoustic Emission** monitoring from 1998 to 2020 on the HRV was validated, with multiple wire breaks found in Sample 3. MISTRAS AE testing showed significant improvement in AE source location and source characterisation.

Summary

- The application of advanced NDT and AE monitoring has been effectively demonstrated.
- There was correlation between NDT results and forensic investigation of grouting in the ducts.
- GPR is essential in locating rebar and duct locations, prior to other testing.
- Impact Echo is 'simple' and reliable with a valuable role to play in void detection.
- Advanced ultrasonic NDT provides detailed information on duct voids interpretation and display of data requires greater care.
- Practical testing work benefits from battery powered, light weight, robust and well designed systems.
- The original **Acoustic Emission** monitoring from 1998 to 2020 on the HRV was validated, with multiple wire breaks found in Sample 3. MISTRAS AE testing showed significant improvement in AE source location and source characterisation.
- Success is a combination of the 3 P's *Product, Procedure* and *Personnel*.
- Trial and calibration of any testing is <u>essential</u> to develop and confirm a successful application (especially with many variables in structures).
- Conventional destructive inspection is limited to small areas while modern non-invasive inspection technologies and AE monitoring can be applied over significantly larger volumetric areas and causing no damage to the structure.

Summary

- The application of advanced NDT and AE monitoring has been effectively demonstrated.
- There was correlation between NDT results and forensic investigation of grouting in the ducts.
- **GPR** is essential in locating rebar and duct locations, prior to other testing.
- **Impact Echo** is 'simple' and reliable with a valuable role to play in void detection.
- Advanced ultrasonic NDT provides detailed information on duct voids interpretation and display of data requires greater care.
- Practical testing onsite benefits from battery powered, light weight, robust and well-designed systems.
- The original **Acoustic Emission** monitoring from 1998 to 2020 on the HRV was validated, with multiple wire breaks found in Sample 3. MISTRAS AE testing showed significant improvement in AE source location and source characterisation.
- Success is a combination of the 3 P's *Product, Procedure* and *Personnel*.
- Trial and calibration of any testing is <u>essential</u> to develop and confirm a successful application (especially with many variables in structures).
- Conventional destructive inspection is limited to small areas while modern non-invasive inspection technologies and AE monitoring can be applied over significantly *larger volumetric areas* and causing *no damage* to the structure.
- Thank you to National Highways, the team at AtkinsRealis Jacob JV, VSL and all involved in this project.

MOONSHOT – Huntingdon Railway Viaduct NDT Trials at M1 National Highways Toddington Yard

Jon Watson and Tim Bradshaw – MISTRAS

Markus Denton-Masih and Shirley Underwood – Screening Eagle

James and Norman Bell – Allied Associated Ltd (distributors of Elop and GSSI)

The Studio, 7 Cannon Street, Birmingham B2 5

NATIONAL HIGHWAYS STRUCTURES MOONSHOT PROJECT

BRIDGOLOGY'S GPR WORKFLOW

Presented By:

DR. ALEXIS KALOGEROPOULOS – CEO, BRIDGOLOGY SA

June 16, 2025 | The Studio, Birmingham

HOSTED BY THE ATKINSRÉALIS / JACOBS JOINT VENTURE

THE CHALLENGE

EFFICIENT STRUCTURAL ASSESSMENT WITH GPR

- High accuracy
- Minimal traffic disruption
- Scalable for network-wide deployment
- Cost-effective diagnostics

Our solution:

A standardized GPR workflow enabling layer-by-layer analysis for actionable insights.

WHAT IS BRIDGOLOGY?

Concrete Radiologist

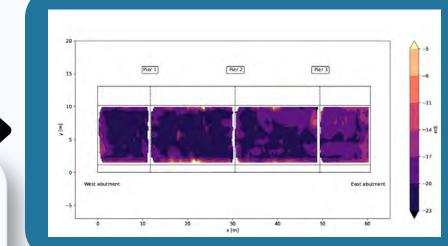
GPR diagnostics for Civil Engineers by Civil Engineers

Based in Switzerland, with offices in Sweden and Thailand

350+ structures assessed across 10+ countries in 12 Years

OUR ROLE IN THE GPR ECOSYSTEM

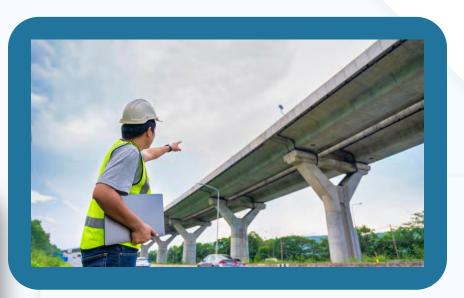
Bridgology bridges the gap between raw GPR data and strategic decision-making. Our standardized workflow ensures consistent data acquisition, expert interpretation, and clear insights to guide proactive maintenance planning.



SCANNING TEAMS

Role: Scanning teams

Responsibility: Conduct field measurements following Bridgology's


standardized protocols **Output:** Raw radargrams

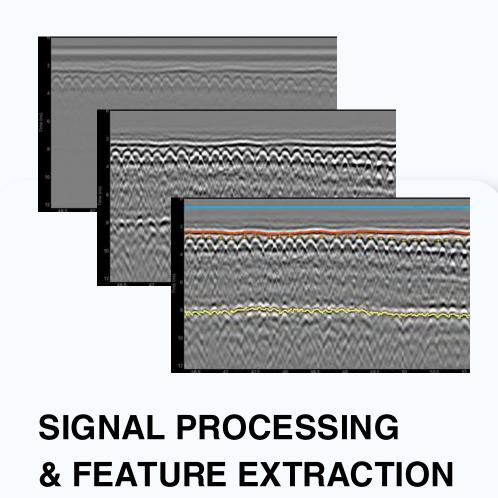
BRIDGOLOGY

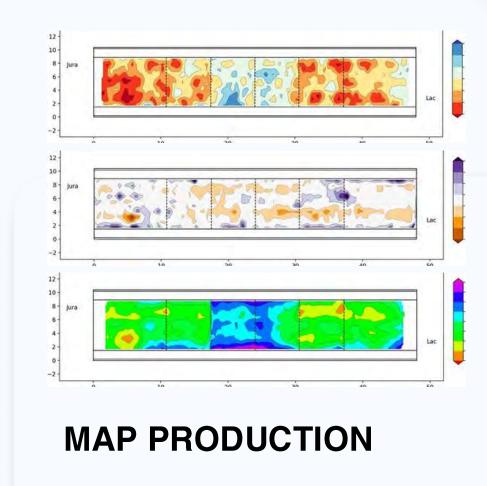
Role: Data Interpretation & Mapping
Responsibility: Analyze radargrams
and produce structural diagnostic maps
Output: Actionable insights to support
maintenance and decision-making

CONSULTANTS / OWNERS

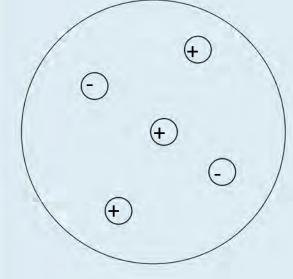
Role: Maintenance Planning

Responsibility: Use diagnostic outputs to plan interventions and prioritize actions **Output:** Informed decisions for long-term

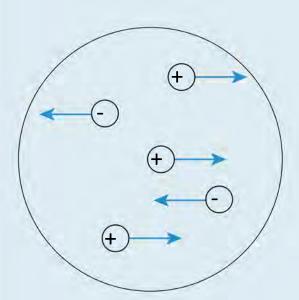

asset management

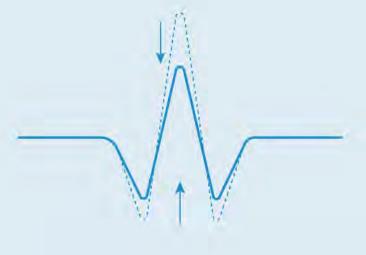

BDGPY – BRIDGOLOGY'S IN-HOUSE SOFTWARE SUITE

Bridgology's proprietary software, BDGpY, powers our diagnostics workflow from field to final report. Purpose-built for concrete radiology, it ensures reliable, repeatable, and high-impact results.

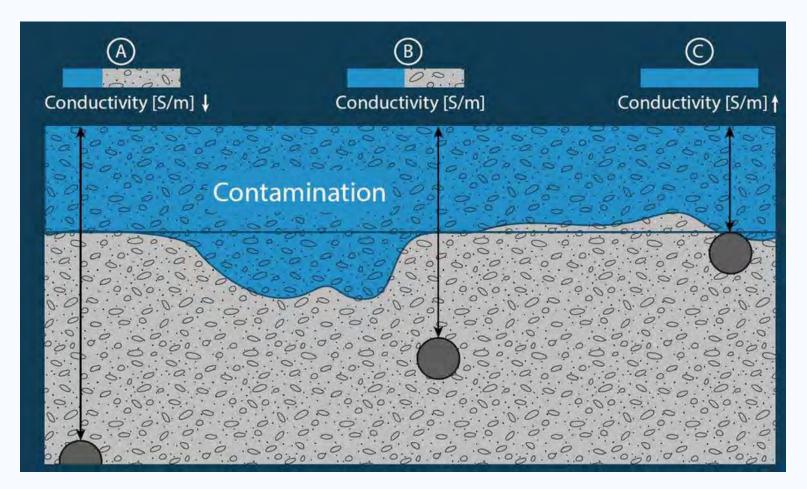


SURVEY PROTOCOL





Conductivity



The method for calculating conductivity from GPR data was developed in Dr. Alexis Kalogropoulos's thesis (EPFL Thesis

No. 5354, 2013), providing a robust framework for concrete analysis.

Corrosion risk

The conductivity of the concrete cover reflects the risk of corrosion of the reinforcing bars:

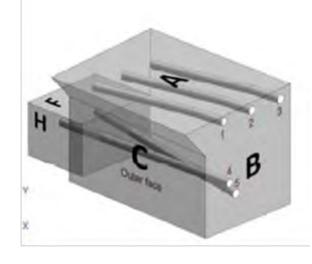
Risk = Hazard x Vulnerability

With:

Risk = Measured conductivity [S/m].

Hazard = Conductance [S], directly proportional to the contamination (% CI-)

Vulnerability = exposure of the reinforcing bars to contamination, inversely proportional to the coating thickness.


Thus, with equal contamination, conductivity decreases when the coating is thick (A) and increases when the coating decreases (C). Conversely, for the same coating thickness, conductivity increases for high contamination and decreases for lower contamination.

MOONSHOT RESULTS

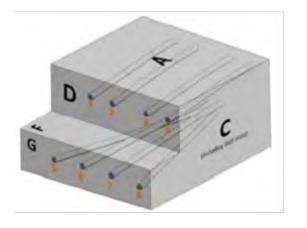
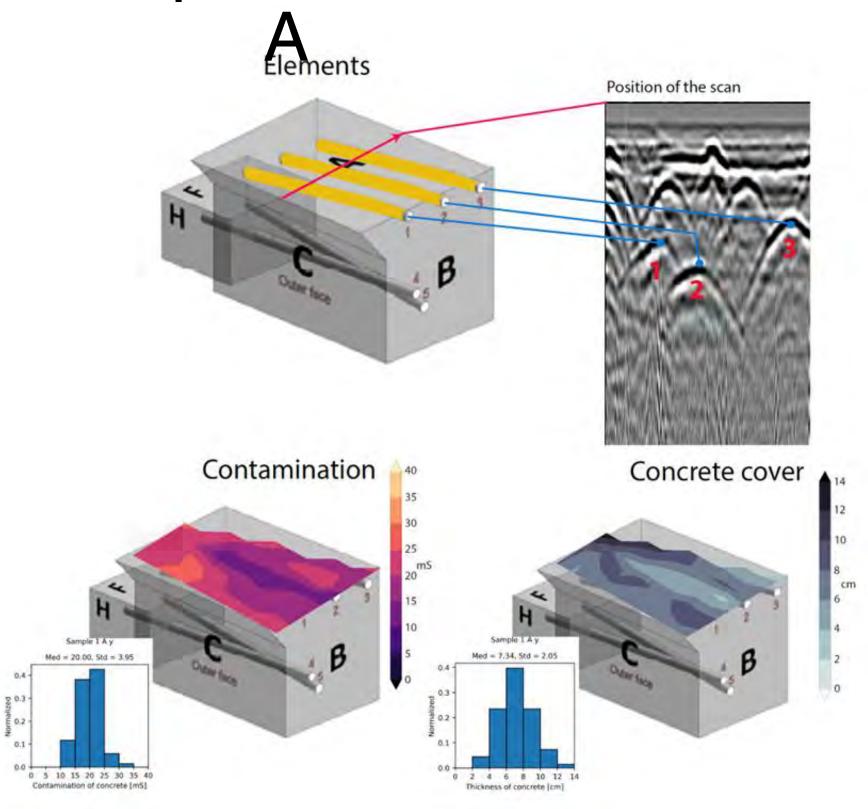
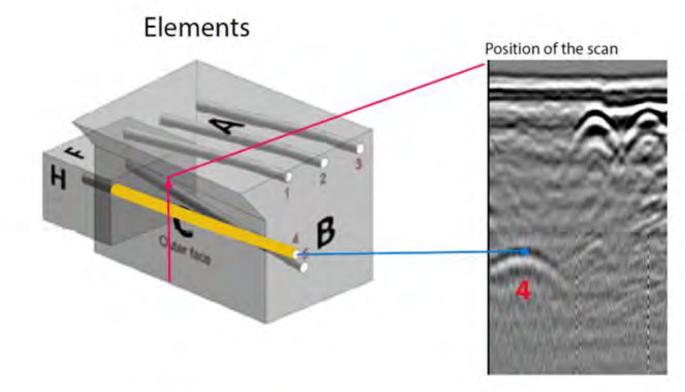
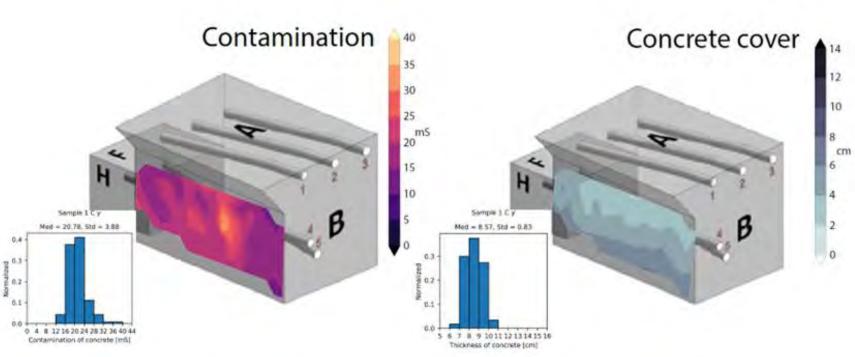

Data collection

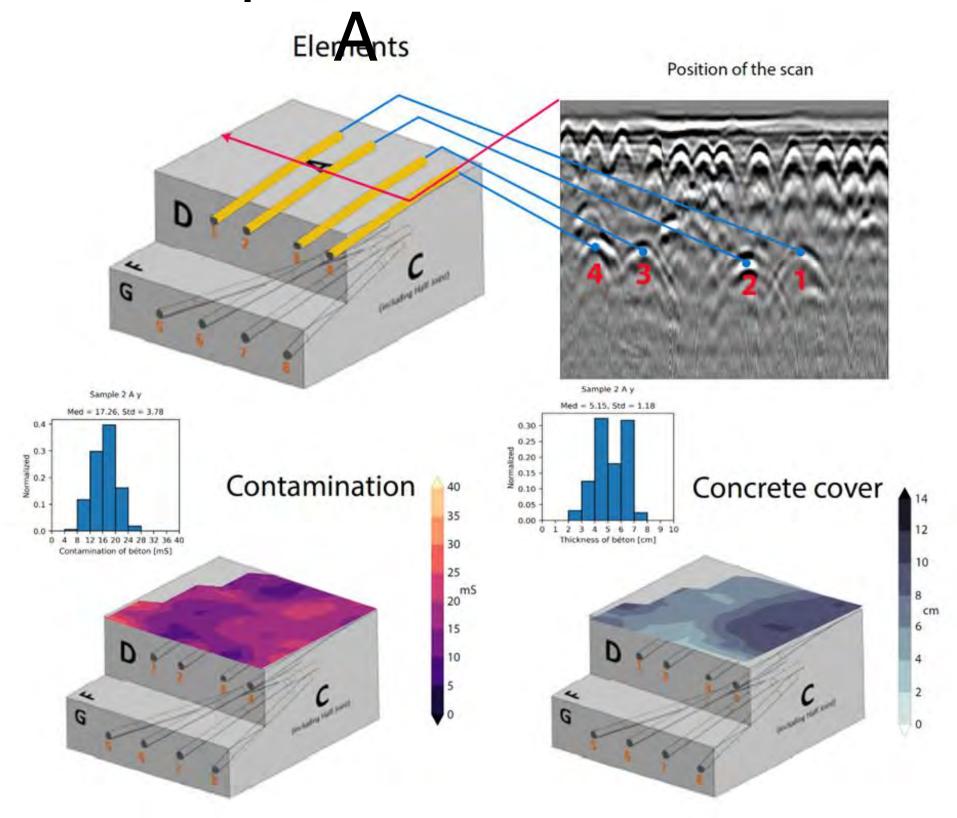
Table 1: Table of the meast ement and analysis

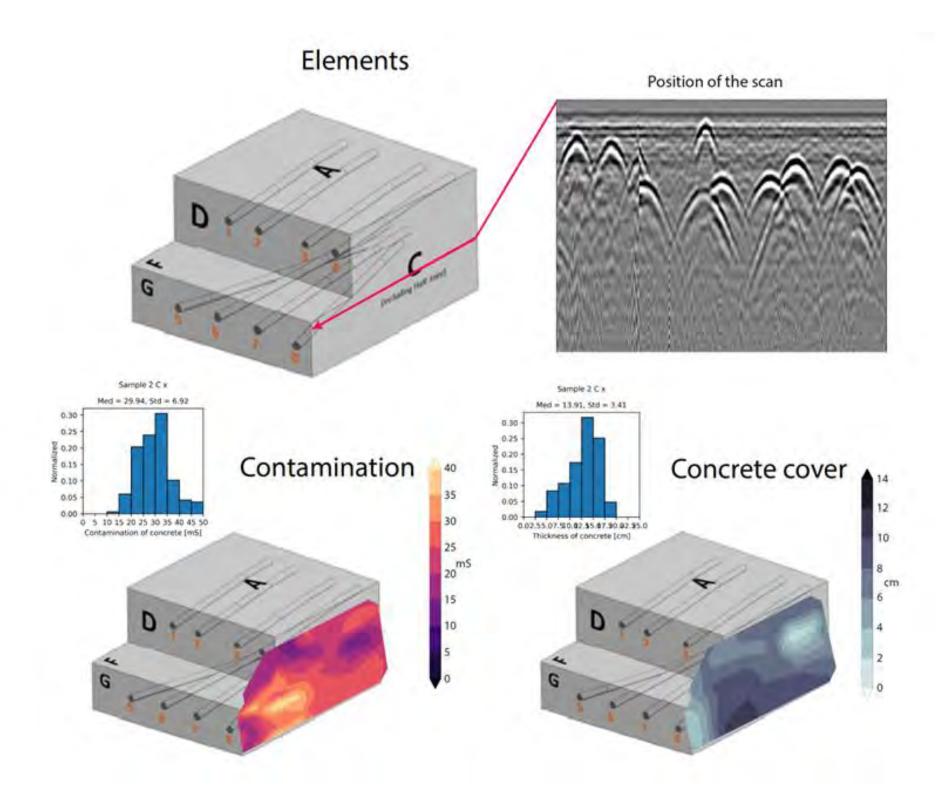
Sample Nr	Face	Measured	Analysed
Sample 1	A	Yes	Yes
Sample 1	В	Yes	No
Sample 1	C	Yes	Yes
Sample 1	D	Yes	No
Sample 1	E	Yes	Yes
Sample 1	F	Yes	Yes
Sample 1	G	Yes	No
Sample 1	Н	Yes	No
Sample 2	A	Yes	Yes
Sample 2	В	Yes	No
Sample 2	C	Yes	Yes
Sample 2	D	Yes	Yes
Sample 2	E	Yes	Yes
Sample 2	F	Yes	Yes
Sample 2	G	Yes	Yes
Sample 2	Н	Yes	Yes
Sample 3	A	Yes	Yes
Sample 3	В	Yes	No
Sample 3	C	Yes	Yes
Sample 3	D	No	-
Sample 3	E	Yes	No
Sample 3	F	Yes	No




GP 8000


Sample 1 – Face


Sample 1 – Face C



Sample 2 – Face

Sample 2 – Face C

RECENT RESULTS

WATERPROOFING CONDITION ASSEMENT

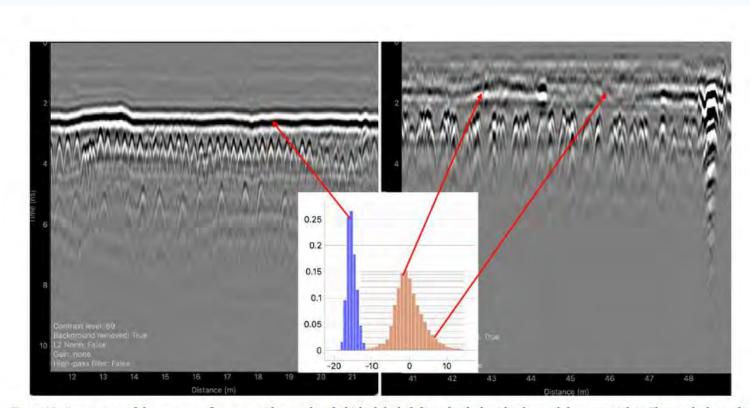
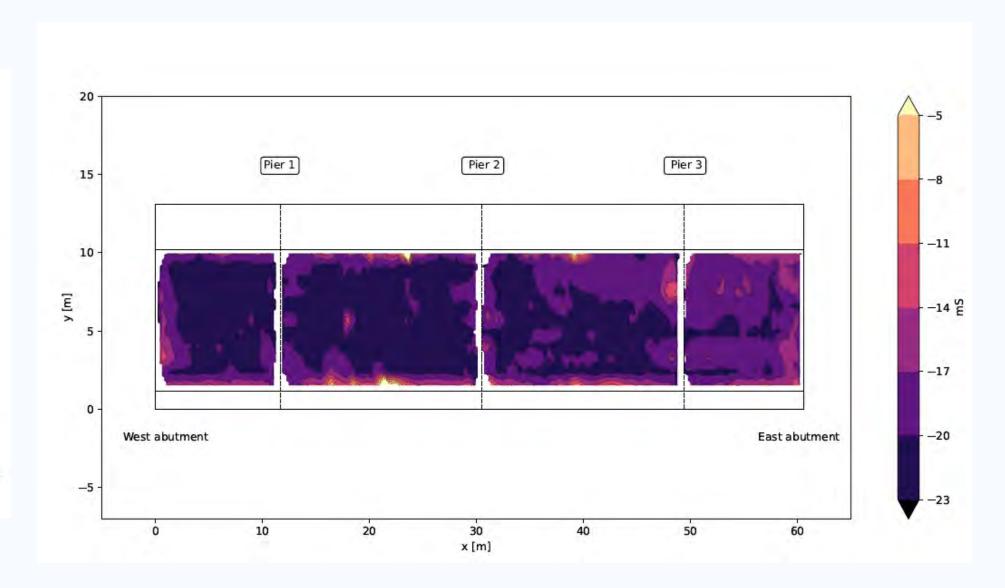
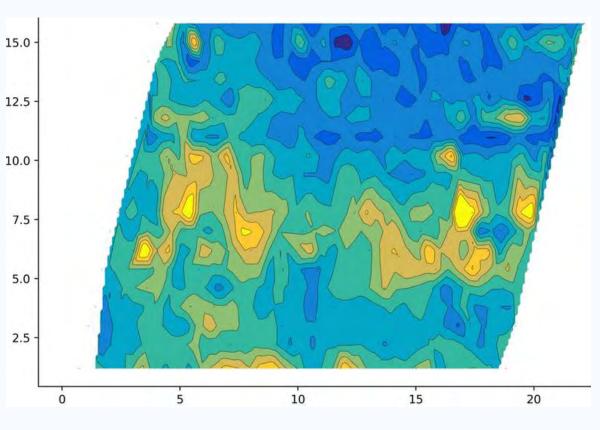
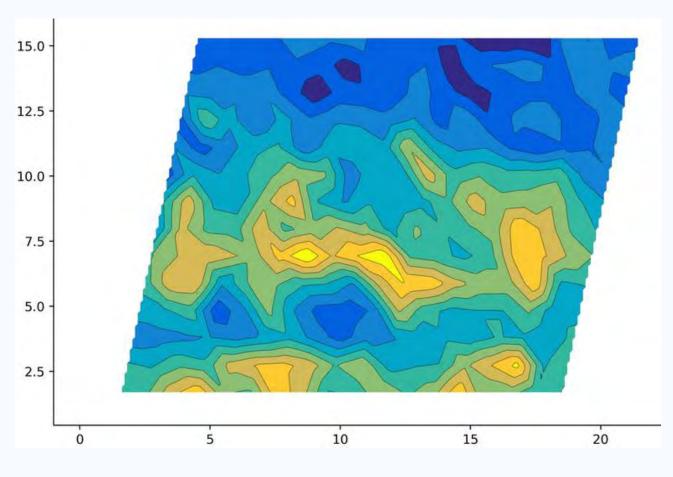




Figure 12: Comparison of the waterproofing state with a newly refurbished deck (left) and a deck with advanced damages (right). The graph shows the distribution of the asphalt conductance.


GPR VS HALF CELL POTENTIAL

Efficient and quick data acquisition (4 hours)
Independent of asphalt layer presence

2024 GPR study

2014 Initial half-cell potential measurement:
Removal of the asphalt and weaterproofing
Temporary asphalt since 2014 without any waterproofing

2014 half-cell potential study

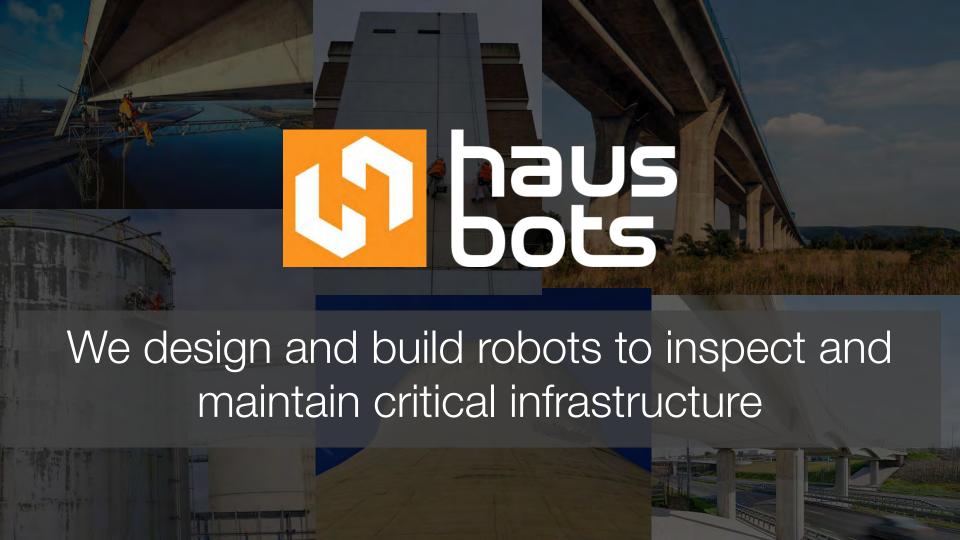
CONCLUSION

Key takeaways

Structured workflow allows swift and accurate data collection Data processing with BDGpY allow multi-layer analysis.

Maps allow a global vision of the structure, targeted probing, and statistics.

Bridgology delivers actionable insights to optimize inspection campaigns and support long-term asset management.


THANK YOU

FOR YOUR ATTENTION
AND PARTICIPATION

CONTACT INFORMATION:

- +41 79 297 40 54
- ak@bridgology.com
- www.bridgology.com
- Le Grand-Chemin 73
 Epalinges 1066 Switzerland

Agenda:

- Company overview
- An overview of the technology
- Description of the trials conducted as part of the Structures' Moonshot project
- Presentation of key results
- Development of the technology since the trials

thaus bots

- Founded in 2016. Close on a decade of robotic deployment experience.
- Patented technology from university research
- Team of 10 including aerodynamics and mechatronics experts with deep understanding of aerodynamic downforce
- 6 years of intense and unique technology development, available on the market from 2022
- Based in UK, operating globally
- Deployed on +60 projects
- 6 robots and crawlers in house fleet
- 8 robots and crawlers deployed with customers
- New product launch September

Global presence

60+ successful projects across 13 different countries. Our services and product sales cover worldwide operations

- **HQ in UK**
- Brazil
- **United States**
- Germany
- Australia
- Canada
- **Netherlands**
- Sweden
- Italy
- **Singapore**

Technology Overview

What is AEROGRIP

Hybrid airflow and suction
 High airflow, with the downforce benefits of low pressure designed and built to drone standards with redundancy, back-up and flight control systems

Semi - rigid airflow guiding skirt
 Provides up to 150% extra downforce, without the need for a total vacuum seal

• Turbulence enhancing surface geometry Provides up to 90% extra downforce

Drone vs Crawler

NDT

With a constant connection to the surface, the HB2 can carry up to **6 kg** of payload for NDT equipment. Drones often limited to 'spot checking'

Regulations

Crawler robots do not fall under expensive and complex CAA, EASA or FAA regulations

Stability

The HB2 can operate in many weather conditions including rain and up to **45 mph** wind. And provide steady constant data in confined spaces

Platform modularity

Our platform options

HB₂

Negatives:

Payload of 6kg (4kg at 25m tether)

Benefits:

 Increased maneuverability down to 1.8m surface diameter

Recommended for:

- Remote visual
- UT (A-scan/ B-scan)
- Light payloads on small diameter assets

Our platform options

HB3

Negatives:

 Reduced maneuverability on smaller diameter assets

Benefits:

• Payload of up to **25kg**

Recommended for:

- Corrosion mapping
- Scanning
- Large area coverage

1 robot - many inspections


Disclaimer

I was personally not involved in these trials, and HausBots role is a robotics manufacturer, not experts on NDT sensors or probes. For specific technical information, I can provide high level overview, but would point you towards the probe manufacturer for NDT specifics.

Trials conducted

Sensors Deployed

Camera Specifications	3
	A 30X zooming pan tilt camera for 360 degree viewing, and integrated lighting system with long and short
<u>Overview</u>	range high power LEDs
<u>Stills</u>	
Sensor Frame Resolution	
(Megapixels)	2MP
Sensor Type	Sensor Frame Resolution (Megapixels)
Optical Zoom	30X
<u>Video</u>	
Maximum Frame Size	1920x1080
Maximum Frame Rate	30fps
Compressed Video Format	H.264
Transmission method	RTSP position:1.34m
Resolution at Max Zoom (lp/	<u>mm)</u>
Defect resolution	65 micron (close) 0.6mm at 10m

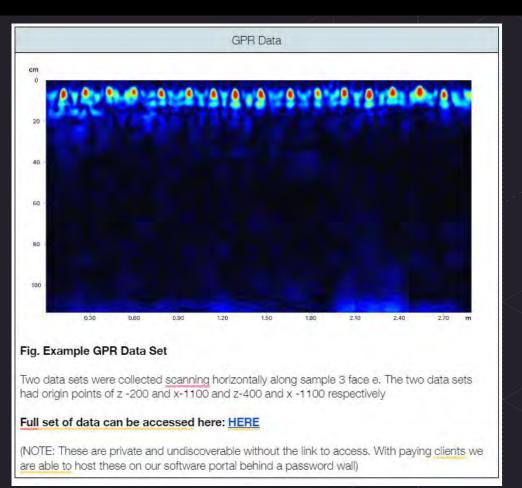
Data Collected

Sensors Deployed

GPR Specifications

Product Name GP8000

Manufacturer Proceq


Serial Number PM08-005-0081

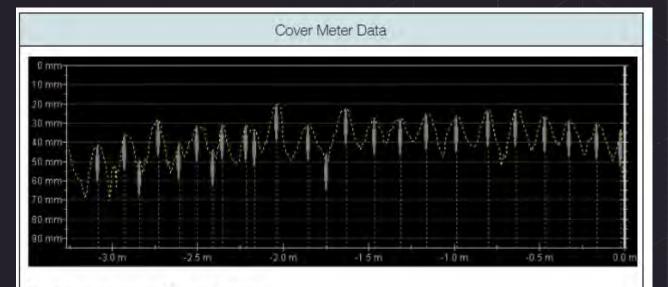
Software Version 4.9.1

Hardware B0

Data Collected

Sensors Deployed

Cover Meter Specifications


Product Name PM-650 Al

Manufacturer Proceq

Serial Number UP01-009-0746

Data Collected

Fig. Example Cover Meter Data Set

Two data sets were collected scanning horizontally along sample 3 face e. The two data sets had origin points of z -200 and x-1300 and z-400 and x -1300 respectively

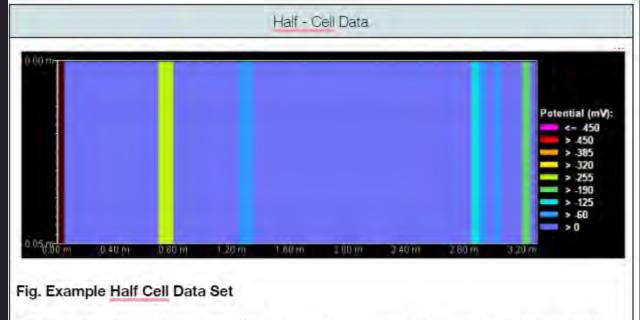
Full set of data can be accessed here: HERE

(NOTE: These are private and undiscoverable without the link to access. With paying clients we are able to host these on our software portal behind a password wall)

Sensors Deployed

Half Cell Specifications

Product Name PM-650 Al


Manufacturer Proceq

Serial Number UP01-009-0746

anistania 115

Data Collected

Two data sets were collected scanning horizontally along sample 3 face e. The two data sets had origin points of z -200 and x-1100 and z-400 and x -1100 respectively

Full set of data can be accessed here: HERE


(NOTE: These are private and undiscoverable without the link to access. With paying clients we are able to host these on our software portal behind a password wall)

Key results

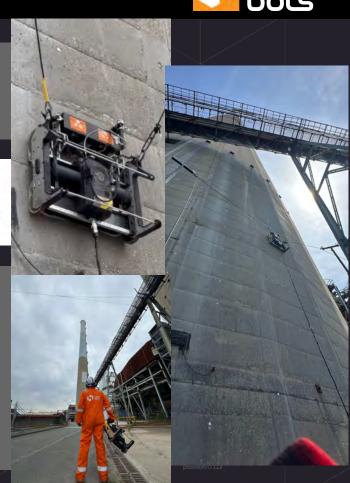
KPI Comments


- 1. Robot can climb with stability on a variety of surfaces.
- Robot can climb inverted
 This capability was successfully demonstrated on sample 3 face F
- 3. Robot can demonstrate control and stability with mounted NDT sensors
 - This capability was successfully demonstrated
- 4. Data collected is presented in acceptable format with location of data capture recorded
 - This capability was successfully demonstrated

Development since trials

- New robotic platforms launched (HB2 and HB3)
- New sensor integrations (Ultrasonic tomography + more)
- Robotic deployed concrete NDT has become business as usual in many industries worldwide thanks to HausBots

Case study - Power



What?
 Concrete integrity Services provided using MIRA and GPR

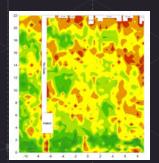
• Who?

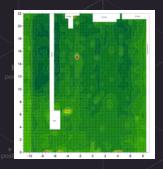
Financial benefits and ROI
 Collected 250m of GPR line scans and 70 MIRA B-scans in 2 days. Estimated scaffolding saving: £60,000
 No humans left the ground to undertake this inspection, enhancing site safety.
 Estimated time saving: 2 weeks vs traditional speed.

Case study - Cement

• What?

Concrete integrity **Services** provided using half-cell potential and cover meter ferrous scanning


• Who?
Tarmac (CRH) cement manufacturer



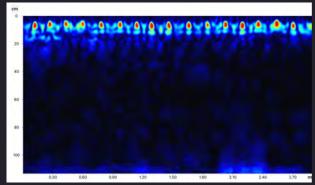
5 days per silo using the robot, 20 days traditional. Minimal site disruption using robotics compared to scaffolding, cherry pickers etc. Using HausBots the main plant road stayed open, which transports £500,000 of product per day. Scaffolding or cherry pickers would close the road Quotation of £100,000 for scaffolding of 1 silo.

Case study - Transport

USA Federal Highway Authority - One of many business as usual deployments on FHWA structures

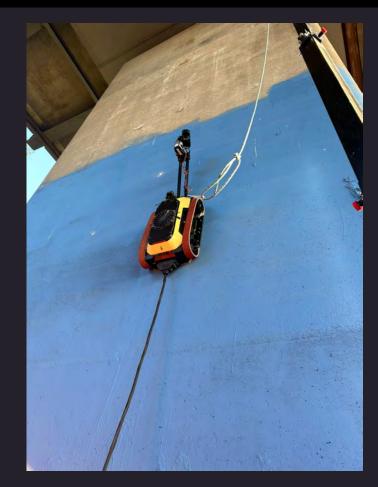
Case study - Transport

Case Study



Avonmouth Crossing

- GPR Inspection
- Trial project



Bearing inspection

Bearing inspection

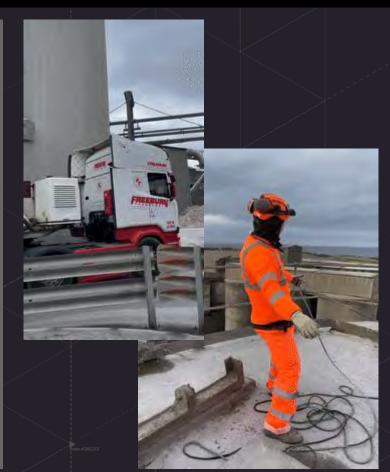
to haus bots Appendix

Other Benefits

Health and Safety

The implementation of the HB1 on this project reduced working at height by 90%

Haulage Traffic


The main traffic thoroughfare for the site was not blocked due to the small footprint of the HB1 team. The traditional MEWP would have needed to block the main route and cost the site valuable manufacturing time

C. 100% Asset Inspection Coverage

The HB1 provided the only economically viable option to inspect almost 100% of the asset. Other methods would be too slow or costly. The reliability manager got as much data as possible to make an informed decision, not just spot areas

Wind and Weather

45mph gusting winds were present during this project. The HB1 operated significantly higher than a drone (20mph wind max) or a MEWP (25mph wind max) and got the project completed on time in 5 days.

Toddington Testing Partners

Cover Meter Survey: **Elcometer 331 Cover Meter**

Electrical Resistivity: **Proceq Resipod**

Half-Cell Potential: **Proceq Profometer Corrosion**

Chloride contamination and **carbonation** depth

Defect 2

Defect 3

Defect 4

Defect 5

Defect 6

Cover Meter Survey: **Elcometer 331 Cover Meter**

Electrical Resistivity: **Proceq Resipod**

Half-Cell Potential: **Proceq Profometer Corrosion**

Chloride contamination and **carbonation** depth

	-900	-700	-500	-300	-100	+100	+300	+500	+700	+900
-500	34	29	54	51	37	38	48	52	32	32
300	60	56	80	38	25	50	36	19	50	34
100	62	54	48	57	60	64	54	50	43	50
-100	83	0*	54	64	69	65	52	0*	53	48
-300	61	71	70	57	40	0*	36	36	33	34
-500	67	59	60	56	48	46	40	0*	36	40
-700	60	48	46	40	42	38	0.	38	34	60
-900	84	68	62	64	50	56	48	38	35	40

Depth of cover (mm)

Note: * in an area of spalling.

Cover Meter Survey: **Elcometer 331 Cover Meter**

Electrical Resistivity: **Proceq Resipod**

Half-Cell Potential: **Proceq Profometer Corrosion**

Chloride contamination and **carbonation** depth

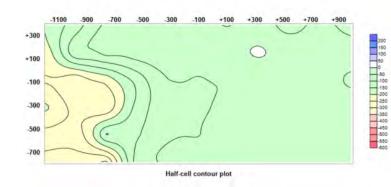
	-900	-700	-500	-300	-100	+100	+300	+500	+700	+900
-500	115	20.2	6.5	19.1	4.2	23.2	15.5	20.2	5.9	33.8
-300	57.4	7.5	58.2	2.0	20.8	19.5	6.1	10.7	11.5	3.1
100	37.4	43.9	1.1	19.0	31.2	20.2	14.2	13.1	13.4	10.1
-100	10.36	25.2	22.1	7.9	27.2	26.1	26.8	10.1	17.1	25.5
-300	10.36	25.2	22.1	7.9	27.2	26.1	26.8	10,1	17.1	25,5
-500	80.2	32.9	19.3	27.0	39.7	33.4	23.2	12.6	22.2	20.1
-700	19.6	15.2	20.4	24.8	15.6	17.2	11.5	12.9	18.2	7.2
-900	11.6	19.2	10.3	18.9	24.3	2.9	9.7	5.7	18.6	20.2

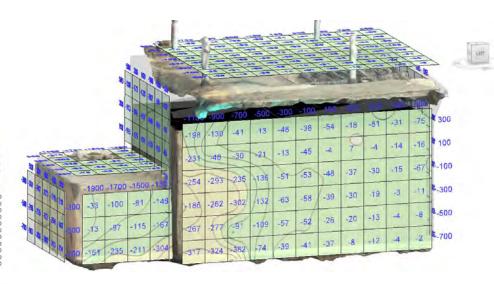
Resistivity (kΩcm)

Cover Meter Survey: **Elcometer 331 Cover Meter**

Electrical Resistivity: **Proceq Resipod**

Half-Cell Potential: **Proceq Profometer Corrosion**


Chloride contamination and **carbonation** depth



Sample 1 – Face C Temperature: 10.7°C

	-1100	-900	-700	-500	-300	-100	+100	+300	+500	+700	+900
+300	-198	-130	-41	-13	-48	-38	-54	-18	-81	-31	-75
+100	-231	-48	-30	-21	-13	-45	-4	7	-4	-14	-16
-100	-254	-293	-235	-136	-51	-53	-48	-37	-30	-15	-67
-300	-186	-262	-302	-132	-63	-58	-39	-30	-19	-3	-11
-500	-267	-277	-91	-109	-57	-52	-26	-20	-13	-4	-8
-700	-317	-324	-362	-74	-39	-41	-37	-8	-12	-4	-2

Half-cell potential (mV)

Cover Meter Survey: **Elcometer 331 Cover Meter**

Electrical Resistivity: **Proceq Resipod**

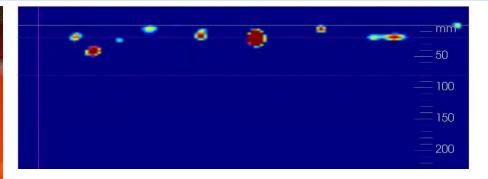
Half-Cell Potential: **Proceq Profometer Corrosion**

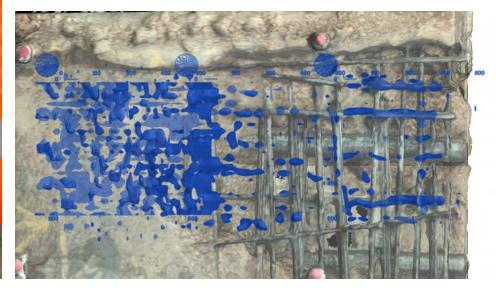
Chloride contamination and carbonation depth

Laboratory testing - Sample 1

Sample Location No.	Sample Location	Sample offset	Depth of carbonation	Cement content (% by mass	Chloride ion content (% by mass of cement) Depth from surface of concrete (mm)			
NO.			(mm)	of sample)	5-25	25-50	50-75	
t	Face A	(+X900 +Y100)	<5	21.4	0.62	0.27	0.16	
1	Face C	(-X1100 -Z700)	<5	÷	1.97	1.73	1.62	
1	Face D	(-Y500 -Z700)	<5	0.8	1.14	1.08	0.95	
1	Face E	100mm crack distance from outer face	<5		0.86	0.93	-	
1	Face E	200mm crack distance from outer face	<5	100	0.74	0.97	-	
1	Face E	300mm crack distance from outer face	<5	8	0.24	0.20		
1	Face F	(-X1900 +Y500)	<5	9	2.90	2.35	1.89	
1	Face G	(-Y100 -Z700)	<5	131	1.19	0.64	0.12	
1	Face H	(-X1300 -Z700)	<5	7	1.11	0.88	1.06	

A determined cement content as shown were used to calculate the chloride ion content.





Cover Meter Survey: **PS 1000 X-Scan Concrete scanner**

Magnetic Flux Leakage

Magnetic Flux Leakage

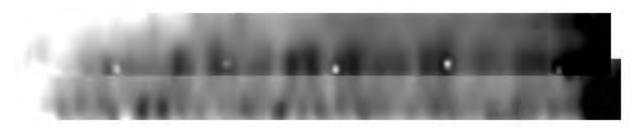


figure 6-1: Combined magnetic picture of the two measuring tracks of face A

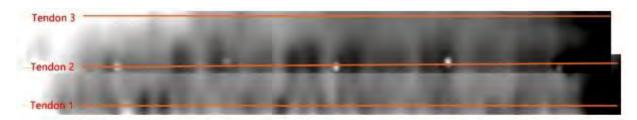


figure 6-3: The magnetic picture from figure 6-1 with marking of the position of tendons 1 to 3

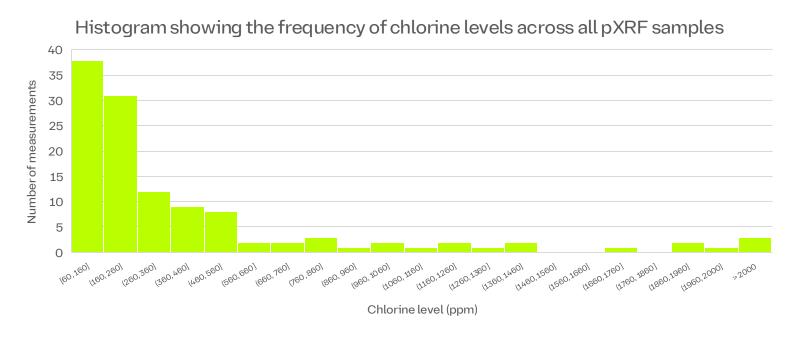
figure 6-5: The magnet picture of face E with the tendons 4 and 7

Increase

FTIR Gas Monitoring


Portable Xray Fluorescence (PXRF)

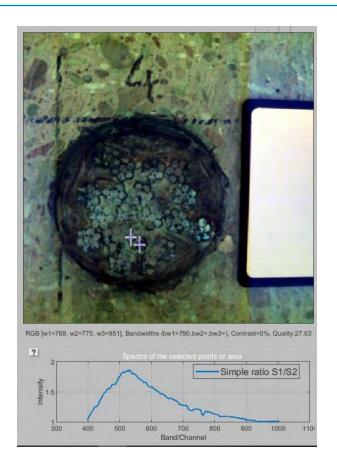
Hyperspectral Imaging

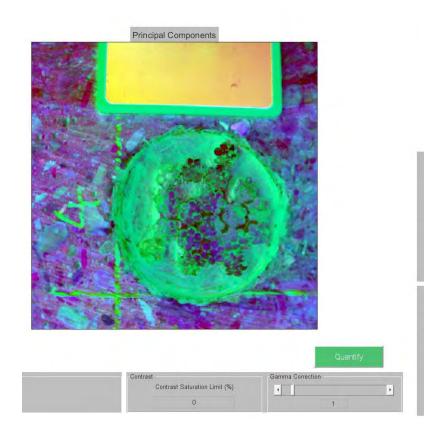


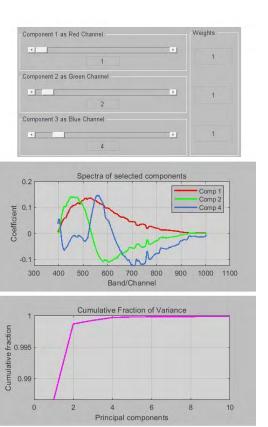
FTIR Gas Monitoring

Portable Xray Fluorescence (PXRF)

Hyperspectral Imaging

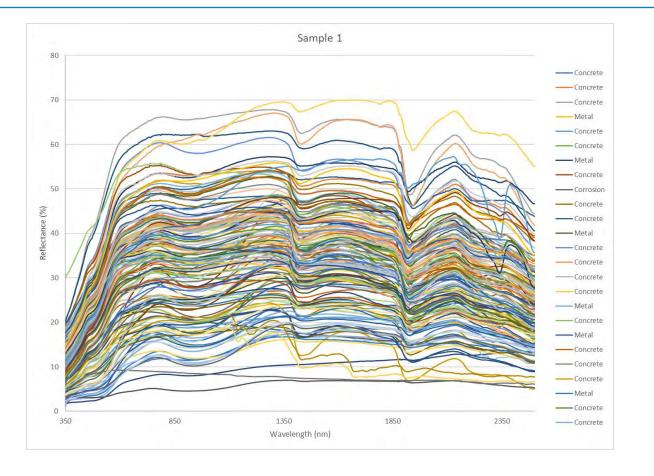





FTIR Gas Monitoring

Portable Xray Fluorescence (PXRF)

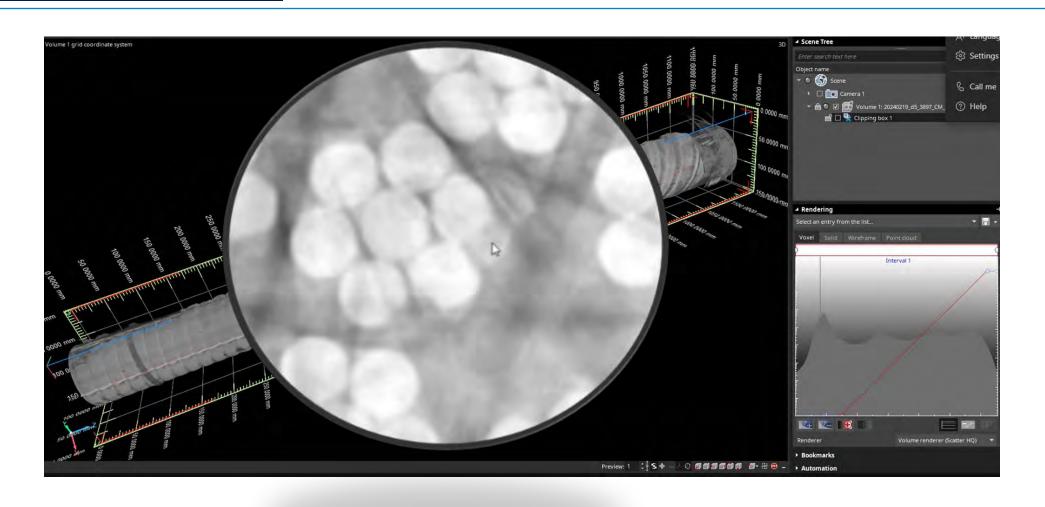
Hyperspectral Imaging



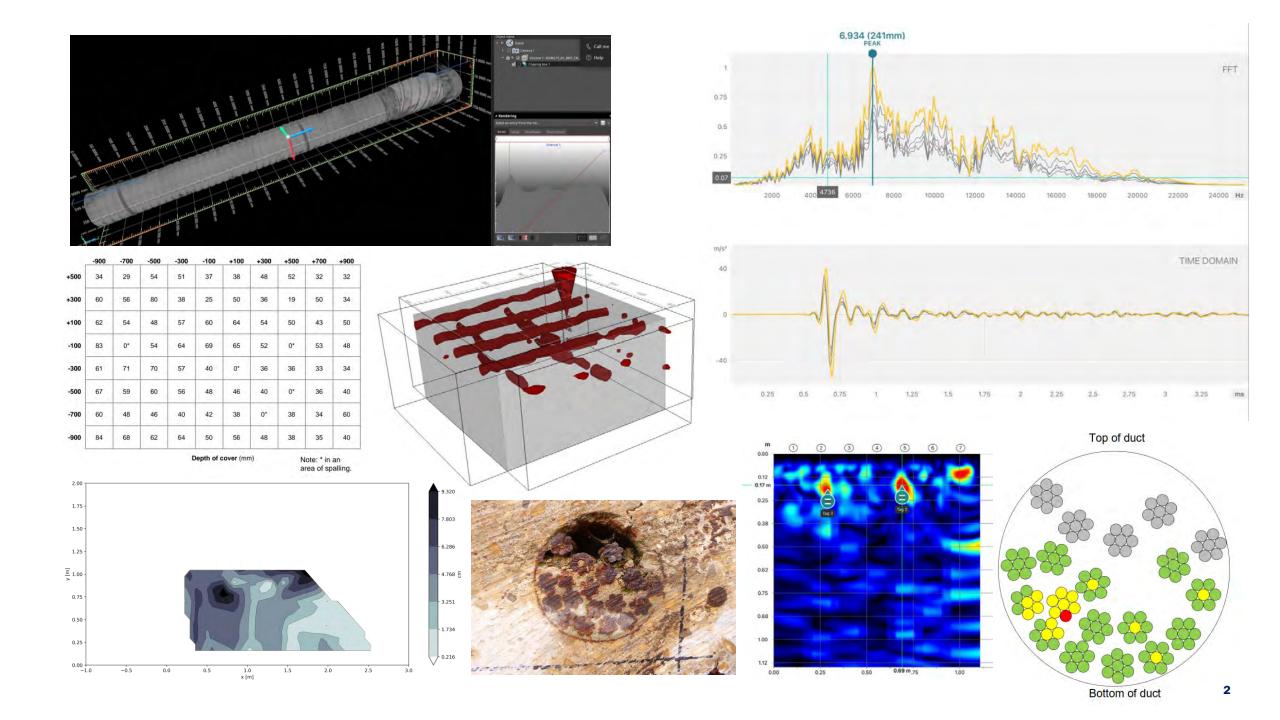
FTIR Gas Monitoring

Portable Xray Fluorescence (PXRF)

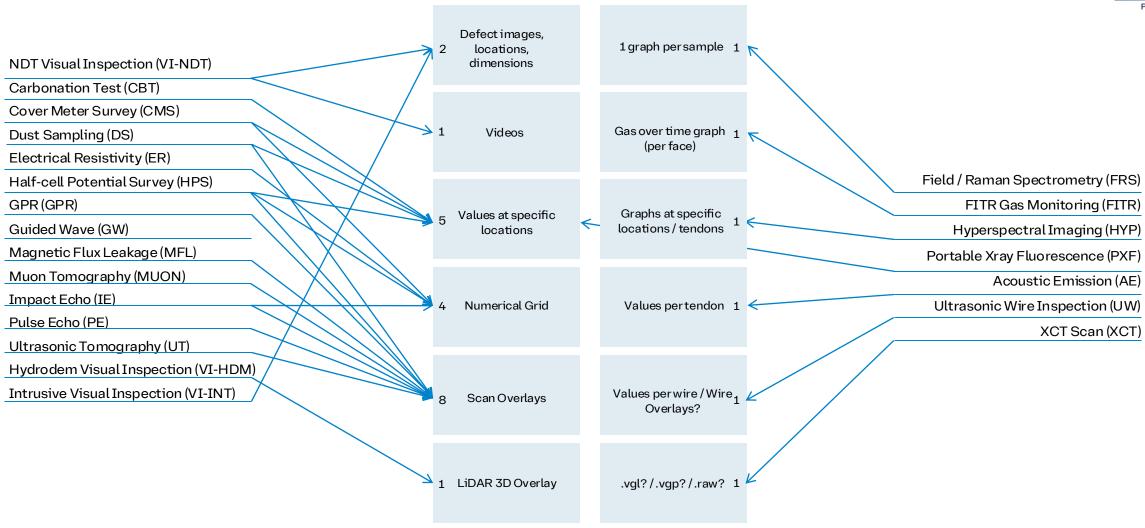
Hyperspectral Imaging

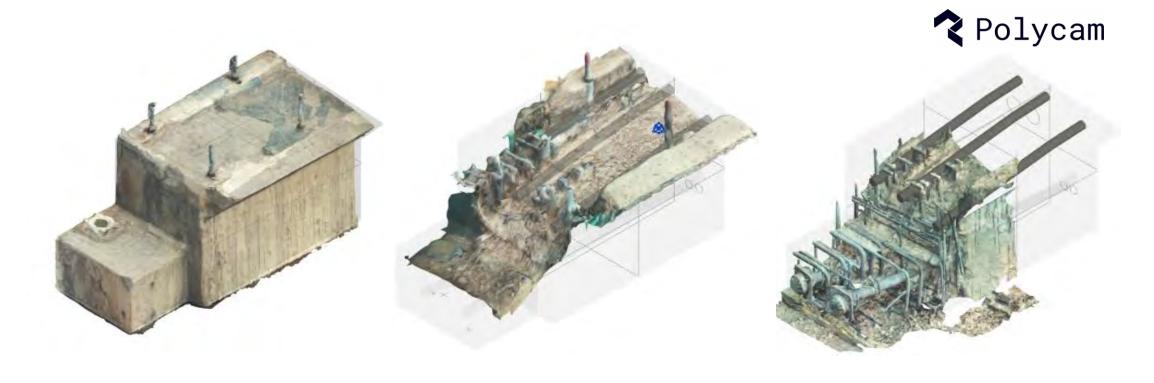


X-ray Computed Tomography (XCT)



Subject Matter Experts: Experts in Collaboration!





Hydrodemolition LiDAR Scans

November 22nd November 27th November 29th

Intrusive Inspection Results

Ducts

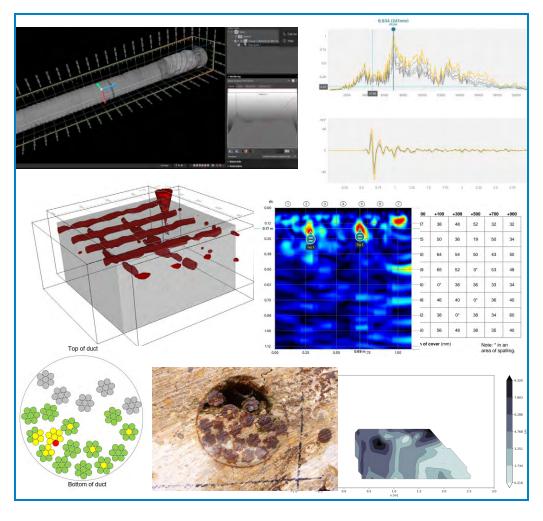
Grout

Tendons

Strands

Intrusive Inspection Results

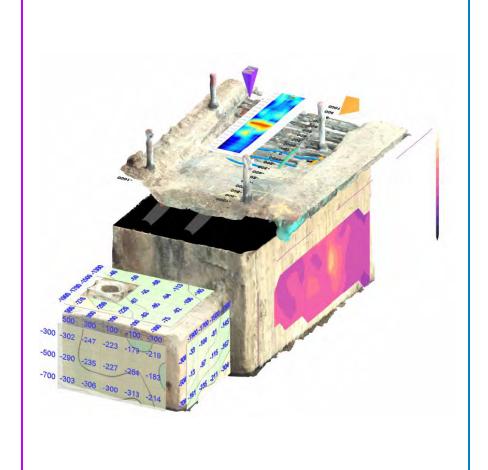
Structures Moonshot – Huntington NDT Trials Tendon Inspection Proforma (This form shall be completed once per duct sample)						
Inspectors	MN / MD					
Date of Test	08/04/2024					
Tendon Details						
Sample Number	-	1	Chainage at End 1 (mm)	0		
Tendon/Duct Number		3 Chainage at End 2 (mm) 1700				
Duct Length (mr	n)	1700				


STEP 1: Pre-Opening Inspection

General Observations

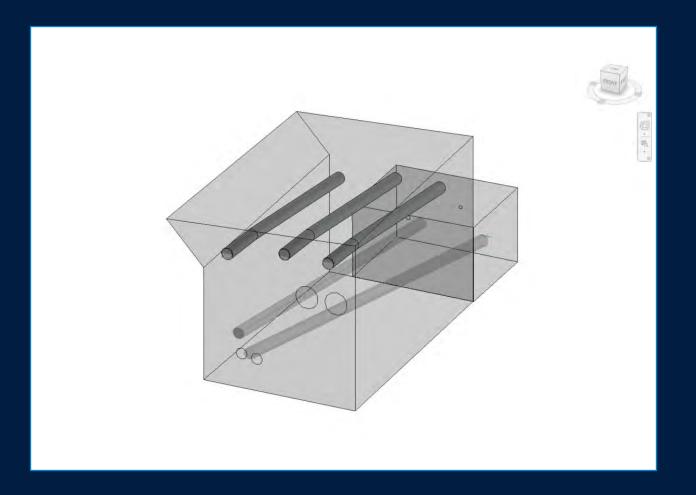
Duct material already removed. Strands bound with cable ties and appeared to have moved from service position. No 12 o'clock position marked. Chainage marked only on outermost wrapping material. Minimal / remnant grout present between strands. Arc shaped portions missing on several strands, consistent with a core sample being extracted at ~690mm chain position, transverse to the orientation of the strands. Strands appeared generally heavily corroded.

All strands subject to full unwinding operation. Defective regions itemised as follow:									
Reference Figure	Strand Number	Chainage Chainage (mm)	Approx % Loss of Section	Description					
1	1	270 - 400	N/A	0 – 270mm wires missing due to tensile fracture of all wires in strand. Fractures appeared brittled and not attributable to section loss – no additional broken wires in evidence.					
'	'	570	0 - 25	Swelling on Strand / Grout forced into interior. No additional broken wires evident when fully unwound although generally corroded.					
		580	N/A	Swelling on Strand / Grout forced into interior					
2	2	1470	0 - 25	Swelling on Strand / Grout forced into interior – no broken wires in evidence when unwound.					
3	3	600	50 - 75	Strand exterior in heavily corroded condition. Significant / major section loss on outermost wires at 600mm chainage.					
		1010	N/A	Tensile break in king wire at 1010mm chainage.					
4	4	140	N/A	Crack in outer wire – wire appeared to be in buckled condition.					
4	4	300	0 - 25	Section loss on all outermost wires evident when unwound. No breaks in king wire.					
5	5	N/A	0 – 25	Wires generally very corroded but no major sectional loss. No breaks in king wire.					
6	6	N/A	0 - 25	Wires generally very corroded but no major sectional loss. No breaks in king wire.					
7	7	670	0 - 25	Wires severed by coring operation at ~670mm chainage. Wires generally corroded but no major loss of section					
				Mine					


Non-Destructive Testing Results

Actual defects recorded during hydrodemolition and intrusive inspection

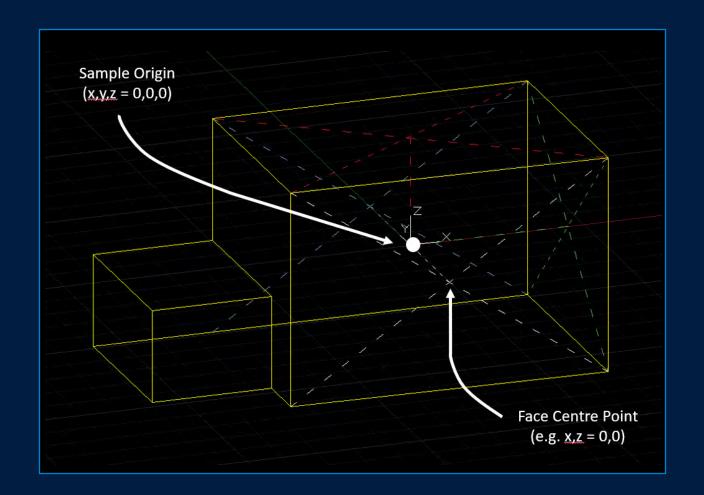
Non-Destructive Testing Results



Actual defects recorded during hydrodemolition and intrusive inspection

Requirements

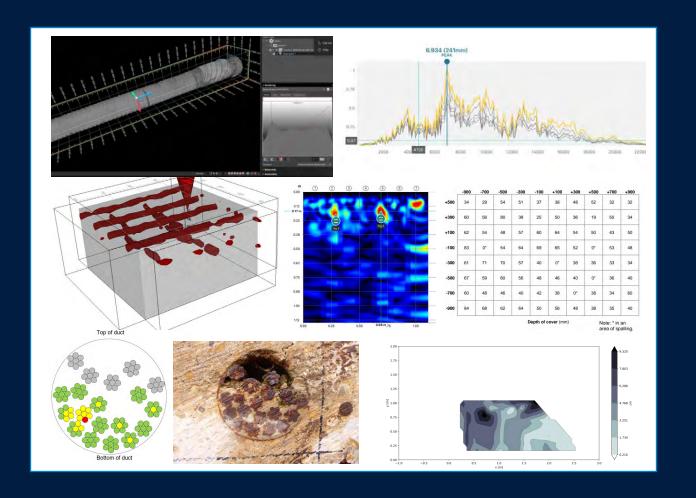
3D Representation of Each Sample



Requirements

3D Representation of Each Sample

Coordinate System Integration



Requirements

3D Representation of Each Sample

Coordinate System Integration

Flexible Data Import
Capabilities

Requirements

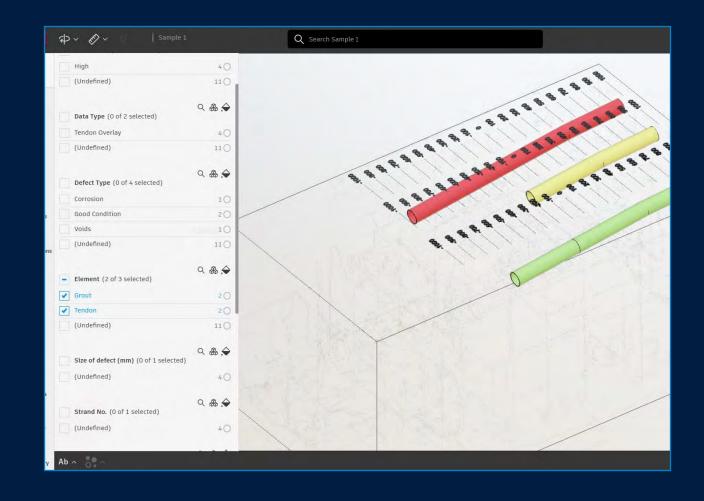
3D Representation of Each Sample

Coordinate System Integration

Flexible Data Import
Capabilities

Compatibility with Existing Expertise

Requirements


3D Representation of Each Sample

Coordinate System Integration

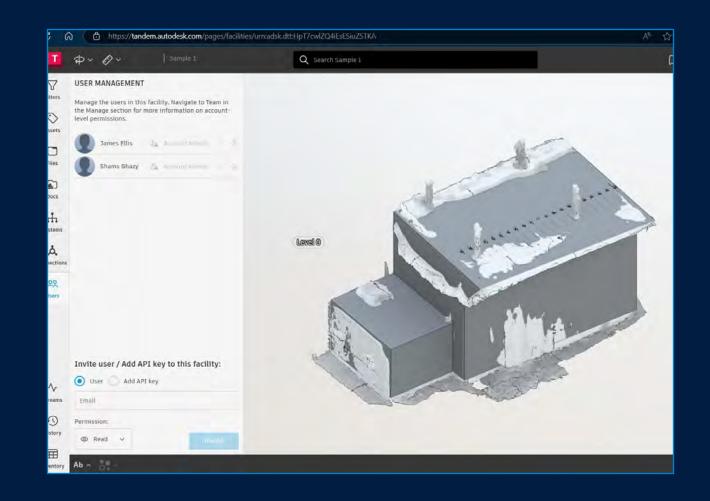
Flexible Data Import Capabilities

Compatibility with Existing Expertise

Data Layering and Toggle Functionality

Requirements

3D Representation of Each Sample


Coordinate System Integration

Flexible Data Import
Capabilities

Compatibility with Existing Expertise

Data Layering and Toggle
Functionality

Accessibility

Federation Challenges

 Engagement with Autodesk and Bentley revealed it's an industrywide gap Dealing with large / heavy datasets of different formats, orientation, scale, and resolution. Overcoming software limitations such as importing texture or overlaying/draping images onto surfaces.

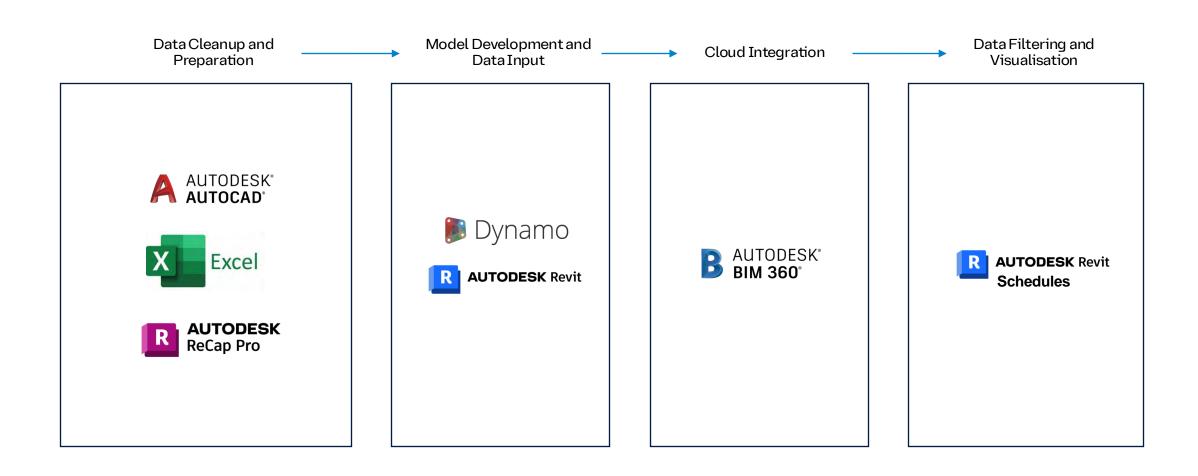
 Suppliers' use of proprietary software and lack of availability of an accessible software that doesn't require special expertise. Processing each dataset individually to ensure it is correctly imported with the right orientation and position. No appropriate metadata schema available so needed to develop a schema to tag the defects for identification.

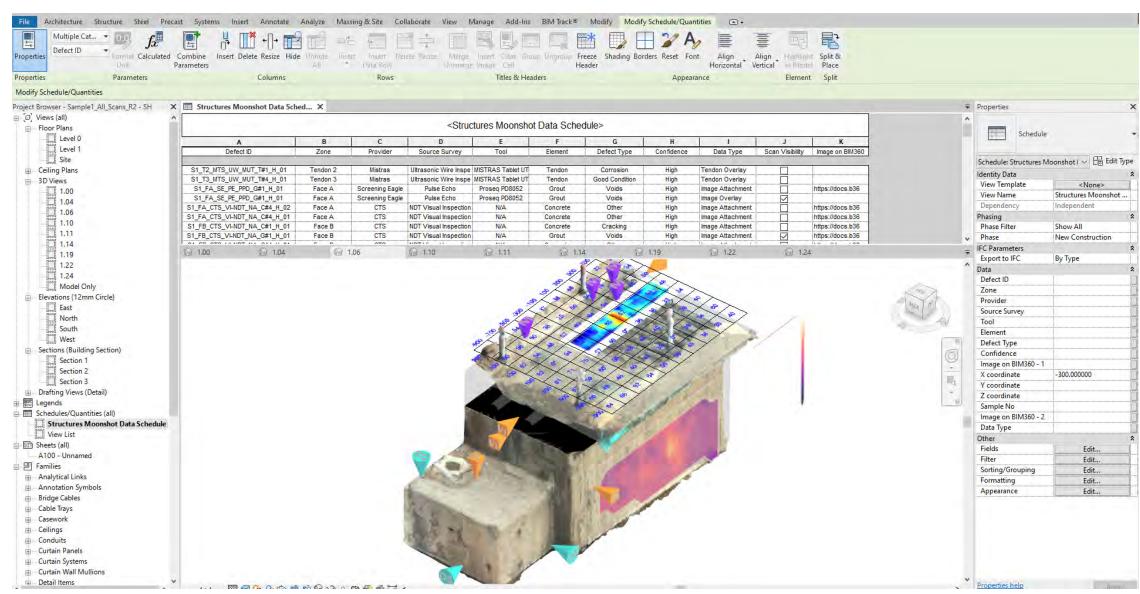
Metadata Schema

	Sample	Zone	Provider	Source	Tool	Element - Type	Confidence
Description	Bridge Sample on which test was conducted	Face or Tendon on which test was conducted	The NDT supplier that conducted the test	The type of NDT method	The specific equipment used for the test	The structural element which the NDT is targeting and the type of measurement it is taking	The supplier's confidence level in the accuracy of the result
Example	Sample 1	Face A	Bridgology	Ground Penetration Radar (GPR)	Proceq GP8000	Concrete - Cover	Medium

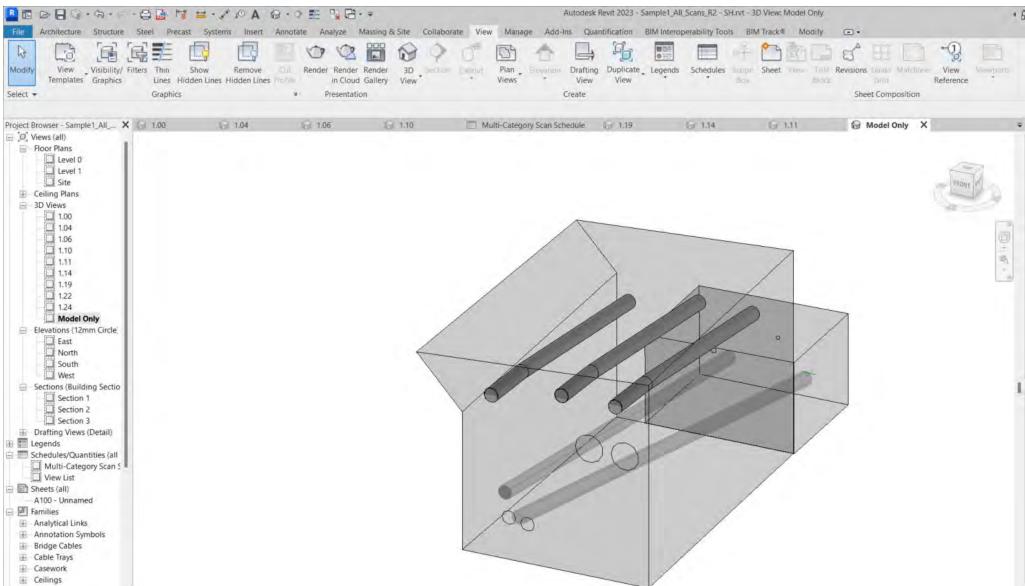
Import Workflows

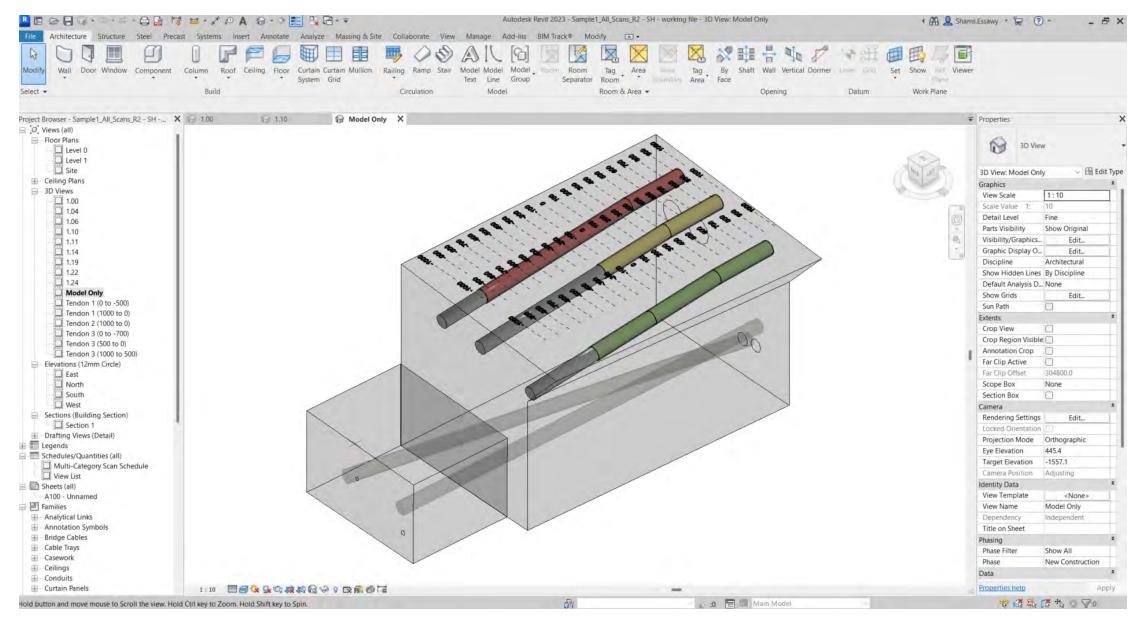
	eaned and to BIM360 Pre-Processing	•	egrated in pital Twin >■
Workflow 1 3D DXF	Check DXF data within AutoCAD and extrude any lines which need to be solid easy viewing within Revit.	Import DXF file into a Revit family Position DXF files within Revit correctly Position family on model	Verify data in digital twin with Supplier
Workflow 2 Image / Video Attachment		 Locate created family for specific data Position on grid for given co-ordinates Fill out metadata and attach BIM360 link to Image / Video attachment 	Verify data in digital twin with Supplier
Workflow 3 Image Overlay	Work out scaling of image Create black and white silhouette image	Create surface for material within family Set up material and apply to surface Position family on model	Verify data in digital twin with Supplier
Workflow 4 LiDAR Scan	Open .obj file within Autodesk ReCap ph Orientate correctly and export	1. Import .obj file 2. Position using similar location points 3. Update Material name and re-apply	Verify data in digital twin with Supplier
Workflow 5 Numerical Grid	Organise data in Excel, in order of import for Dynamo script	Create numerical grid family, mirroring Excel sheet Run Dynamo script to import data from Excel	Verify data in digital twin with Supplier
Workflow 6 Tendon Condition		Create extrusion along tendon, using chainage for length and location Add data to family containing extrusion	Verify data in digital twin with Supplier
Workflow 7 Values at Specific Locations		Locate created family for specific data Position on grid for given co-ordinates Fill out metadata	Verify data in digital twin with Supplier
Workflow 8 Point Cloud	Check point cloud data within Recap Clean up point cloud if required	 Attach point cloud file saved from Autodesk ReCap Position point cloud in model 	Verify data in digital twin with Supplier

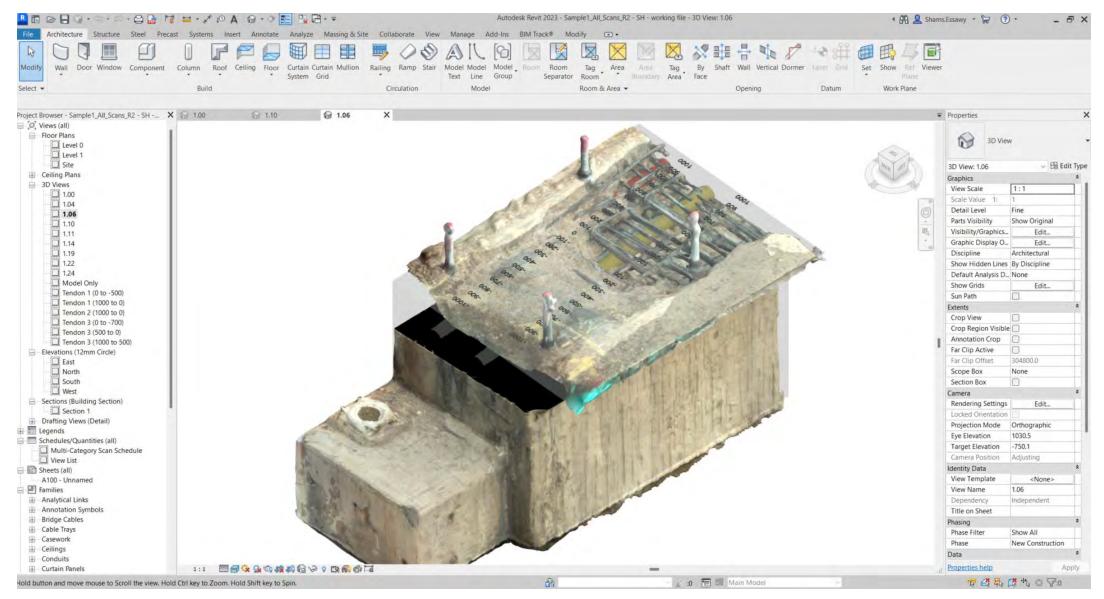

Layering Software Solutions


	BIM TRACK*	AUTODESK Tandem	AUTODESK Revit Schedules
Pros	Color-coded systemClash detection	Web-Based accessibilityEase of use	CustomisabilityIntegrated solution
Cons	Limited usabilityVisualisation challenges	 Static data integration issues Material loss 	Lack of accessibility

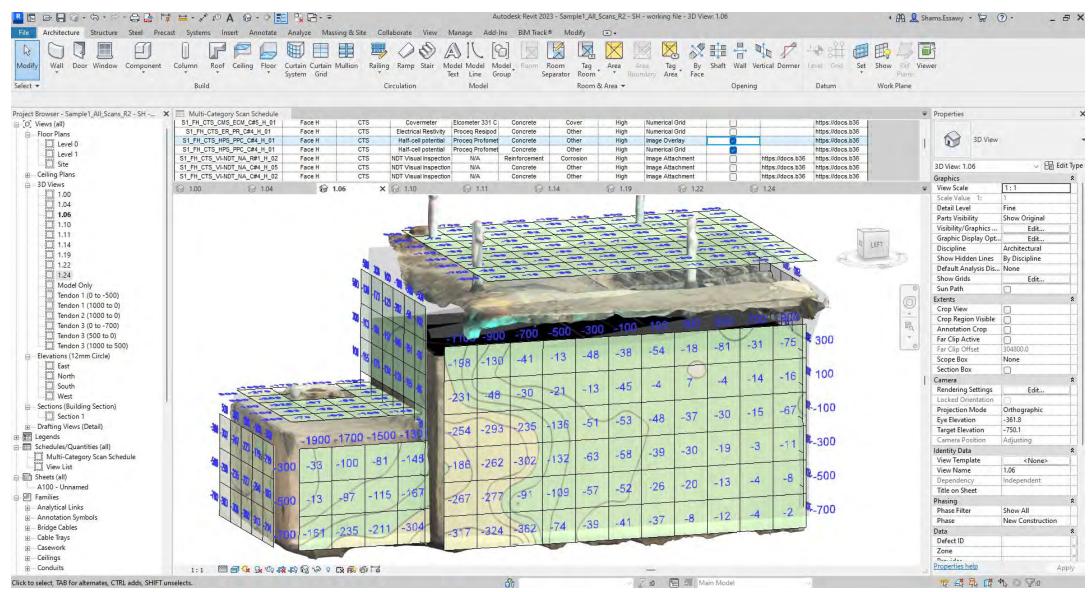
Digital Twin Development







PROJECT



PROJECT

Clement								Dects										Contrete					
Defect Type					Corresion		Cracking	g/ Perforation	Moisterel Presence of Water	Good Coaditio	Core	/ Location	e	racking	c	Morides		Voids		Other	Good Coaditio		Cover
Supplier	Testing Method	Equipment						Lecation Accuracy						Location Accuracy	Detection	Estent Accuracy	Detection	Location Actors	Estant Accuracy	Detection	Detection		Estant Accuracy (mm
	Hedrodemokrice Suresy - LIDAR Scans	Iphone IS Pro Mas	Result	No	N/A	WA.	No		No	Yes	Yes.	107 metrically, 140s Hadrodem 1.10	nn from Page C	1		-						Yes	60 Hydrodom 1.04 right u
Atter/Reals / Socotes	Contrate Testing (Socotoc)	NA.	Risult Notes			1										-			3				nyaroona to engar a
	totrucine Repection	NA.	Recult	No	MIA	194	No	MA.	No	Yes	NIA.	MA		-	-	-		_	-				
		1	Expected Detection?	Yes	1		No		Me	Páti	No		Yes		(/e-	37	Yes	100		No	Táo	No	
	Viceal (aspection / Hummer Tappers	NA	Result										No	NA			Ne	N/A	NIA				
	Anna Berkerson (Immeric) abberd		Rotes										Heirline creek run				No delania	MA	NA				
			Decistion Searc			1	-	_					N/A	N/A 0	-		NIA	NIA.	N/A			-	-
	1		Expected Datactions'	file			fin		-	No	Yes	NA	No		740		No			No	No	Tes Yes	60
	Coher van Lif Sarvey	Dometer 331 Corur Moto	Notes Designer Score								Usable to de N/A 0	N/A N/A										-	Takes above the tead 0.00
	Lac tox	Proced Resigned	Expected Detection?	file			- file		Fr.	766	No		No.		PAI		Yes No	WA	12.85	7ke	tte	744	
crs .	Electrical Resistancy		Notes Designion Score														Moderate	N/A N/A	Malacia Kiron, i N/A 0				
		ton	Expected Datectrion?	He			file		Ha	186	86		Ne		84		Yel No	MA	- 6	114	H).	He	
	Committe on booksion sucta		Notes Distriction Scare															NIA NIA	See depth of a	9			
			Expected Detection?	No			fee			140	th:		No		Yes	High Chloride ion con	Ne			t/c	Ho	lie.	
	Enland) Sampling (Elyat)	NVA.	Notes Desistion Score												Average	N/A							
		I management	Expected Detection?	Yes Ho	NA	>-100	No		Me	160	No		No		No		No			ţile .	No	No	
	Half-cell potential curvey	Procya Professerar Correction	Notes Elevistion Score		NIA	Low rick of cor	rocios																
			Expected Detection?	Mo.			No		The	140	Yec		Me		Ne		Yes			No	140-	Yes	
Streening Kagle	QPR .	Prozeg GP8000	Notes Deniation								Mis-	13 vertically, 75ee Yeary tar out 30	From Feos C				No voiding N/A	N/A N/A	N/A N/A			Yes	Takes above the tend 3.00
			Score									- 475		1		7	0	Û	ú			-2	
			Expected Detection? Recult	- No			160		- No.	No	Yes. No	NA	- No		50		No.	N/A	N/A	Na	No	Yes	Butavora 40 to 60mm
		Proced GP6000	Notes Desistion Score								WA-	N/A N/A					No voiding N/A 0	NIA NIA	N/A N/A			,	Only a range gives Upto 20mm
VSL, Bridgelegy	GPR	Parties and	Expected Detection?	No			No		The	No	No		No			estimate 30 to 15 to	No.		-	No	He	No	
		Proceq GP8000 + Dast Sumpling	Notes Deviation			1	1							1	Lowelsk		ry high - wall	ritios domo lá t	a local to this cope	rimint.			
			Score			1										N/A 0							

1 Detection

Detection is applicable for all defects and will be scored as follows:

Expected Detection	Result	Score
Yes	Correct (True Positive / Negative)	2
No	Correct (True Positive / Negative)	1
No	None	0
No	Incorrect (False Positive / Negative)	-1
Yes	Incorrect (False Positive / Negative)	-2

2 Location Accuracy

- Cracking (Concrete and Ducts)
- Orientation of grout voiding
- Location of strands with wire breaks
- Location of voids (Grout and Concrete)
- Location of corrosion (Strands, Tendons, Reinforcement, Ducts)

Deviation	Description	Score
0 - 10mm	Very Accurate	2
10 - 20 mm	Moderately Accurate	1
>20 mm	Poor	-1

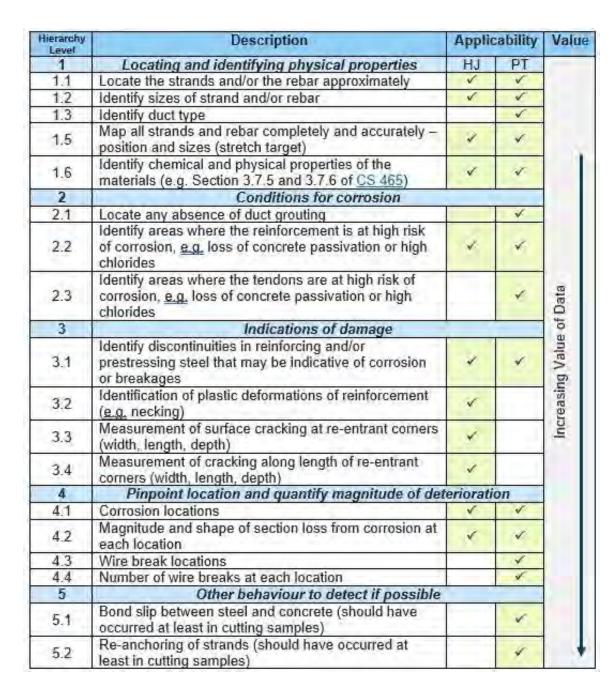
3 Extent Accuracy

Not Applicable for scoring	0

- Section Loss (Strands, Tendon, Reinforcements)						
Deviation	Description	Score				
0–2%	Very Accurate	2				
2-5%	Moderately Accurate	1				
>5%	Poor	-1				

- Number of Wire Breaks		
Deviation	Description	Score
100% match with lab results	Very Accurate	2
90 to 99% match	Moderately Accurate	1
<90% match	Poor	-1

Concrete Cover							
Reinforcement Position and Layout							
	· · ·						
Deviation	Description	Score					
0–5mm	Very Accurate	2					
5-10mm	Moderately Accurate	1					
>10mm	Poor	-1					


Detection

					Strands	S								
		Cor	osion							Se	ection Lo	ss		
Dete	ction	ccuracy		ccuracy		Det	ection			Extent A	ccuracy			
					Tendon	•								
	Corrosion		s	ection Loss		<u>-</u>		Wire B	reak			Good Co	ndition	Other
Detection	Location Accuracy	y Detection					Detection Location Accu			ccuracy	Detection		Detection	
		•	<u>'</u>	•	· · · · · · · · · · · · · · · · · · ·				<u>'</u>			-!		
					Grout									
	Voids / Ungrou		Chlorides		Мо	isture		Lo	ose		Good Condition		Other	
Detection	Location Accuracy	acy Detection	n Extent	Accuracy	Detection		Detect	ion E	Extent Accuracy		Detection		Detection	
					Ducts									
	Corrosion		Crac	king/Perfora			e/Prese	ence of Wate	r Good C	ondition		Cover	/ Locatio	on
Detection	Location Accuracy	y Detection	Location	Accuracy		Detect	tion	Det	etection Dete		ection Locatio		n Accuracy	
					Concret	to.								
				1						Good		Cover		
Cracking			hlorides			Voids	/oids		Other	Condition				
Detection Location Accuracy Detection		Extent Accuracy	Detection	tection Location Accuracy			Accuracy D	etection	Detect	ion De	etection Extent Accuracy			
					Reinforcen	nent								
	Corro		Good Cond	lition		Po	osition / La	sition / Layout						
Detection	n Location Ac	curacy Ext	ent Accuracy	Detection	Exte	ent Accura	су	Detecti	on	Detec	tion	Loc	curacy	

Position / Layout

Location Accuracy

Approach Limitations

 Human error in data collection, processing, alignment, and interpretation. Use of Autodesk
 Revit requires
 specific expertise
 and license access,
 limiting user
 accessibility.

 Diversity of data collected limited the applicability of quantitative comparison, leading to a more qualitative assessment.

Lessons Learnt & Future Recommendations

Geo-referencing

Consistent Data Formats & Resolution

Standard Metadata Schema

Development of Data Management Software for Inspection Data

Stakeholder Collaboration

STRUCTURES MOONSHOT

Thank You

ANY QUESTIONS?

Heatmap Summary of NDT Performance Across Defect Types

Not Applicable

Not Tested

High Consistency

Low Consistency

Moderate Consistency

	Allied Associates (via Mistras)		стѕ					GScan	HausBots, VTC Hilti			IFDB	Mistras			Screening Eagle (via Mistras)				RAU	Univers Bristo RA		Pro-Lite 1e	chnology (via AU)	VSL, Br	idgology	The M Univers Southar			
	Ultrasonics (Concrete)	GPR	Visual Inspection / Hammer Tapping	Cover meter Survey	Electrical Resistivity	Concrete carbonation tests	Chloride Sampling (Dust)	Half-cell potential survey	Muon Tomography	Visual Inspection	Cover meter Survey	GPR	Half-cell potential Survey	Cover Meter Survey	Magnetic Flux Leakage	Ultrasonic Measurements (Steel Tendon)		Impact Echo	Impact Echo	Ultrasonic Pulse Echo (Concrete)	GPR	FTIR Gas Monitoring	Portable Xray Fluorescence (PXRF)	Gamma Ray Spectrometry	Hyperspectral Imaging	Field Spectrometry	Raman Spectophacy	GPR		XCT Sca
	ELOP	GSSI Flex NX	N/A	Elcometer 331 Cover Meter	Proceq Resipod	N/A	N/A	Proceq Profometer Corrosion	Hodoscopes Generation ¹	Hausbots 1080p/30x optical zoom	Proceq Profometer PM8000	Proceq GP8000	Proceq Profometer Corrosion TE	PS 1000 X- Scan Concrete scanner		Mistras Proprietary	EXPRESS-8 (Mistras Proprietary)	Impact Echo Instruments System	Proceq Pl8000	PD8050	Proceq GP8000	Gasmet GT5000 Terra Portable Gas Analyser	ThermoFisher Niton XL3t GOLDD+ analyser	ImiTec ARARI Gamma Ray Sensor	Hyperspectral Camera (400 - 1000nm wavelength)	Spectral Evolution RS3500 Field Spectrometer (350 - 2500nm wavelength)	Wasatch Photonics 785nm Raman Spectrometer	Proceq GP8000	Proceq GP8000 + Dust Sampling	t XCT Sca
												Locat	ing and id	dentifying	physica	l properti	ies													
ocate the strands / tendons																														
ocate the rebars dentify sizes of strands / tendons																														
dentify sizes of rebars																														
entify duct type ap all strands and rebar completely and																														_
ccurately –position and sizes (stretch target) lentify chemical and physical properties of the laterials (e.g. Section 3.7.5 and 3.7.6 of CS																														
35)																														
													Cond	litions for	corrosio	n														
ate any absence of duct grouting																														
entify areas where the reinforcement is at gh risk of corrosion, e.g. loss of concrete assivation or high chlorides																														
assivation of high chlorides entify areas where the tendons are at high sk of corrosion, e.g. loss of concrete assivation or high chlorides																														
													Indi	cations of	damage			•	•				•		•	•				
dentify discontinuities in reinforcing and/or									1											1										_
restressing steel that may be indicative of orrosion or breakages																														
lentification of plastic deformations of einforcement (e.g. necking)																														
leasurement of surface cracking at re-entrant orners (width, length, depth)																														
Measurement of cracking along length of re- intrant corners (width, length, depth)																														
											Pinp	oint loca	ation and	quantify i	nagnitud	de of dete	erioratio	n												
Corrosion locations																														
fagnitude and shape of section loss from orrosion at each location																														
/ire break locations umber of wire breaks at each location																														
umber of wire breaks at each location									I			0	ther beh	avior to de	tect if p	ossible	I													_
ond slip between steel and concrete (should ave occurred at least in cutting samples)																														
e-anchoring of strands (should have occurred t least in cutting samples)																														

Detection Categories

1

Locating and identifying physical properties

Locate and identify strands, tendons, and rebars

Detect the **type of duct**

Identify chemical and physical properties of the materials (**Section 3.7.5** and **3.7.6** of **CS 465**)

2

Conditions for corrosion

Locate any **absence of**

Identify areas where the reinforcement or the tendons are at high risk of corrosion

duct grouting

3)

Indications of damage

Identify **discontinuities** in reinforcing and/or

prestressing steel that may be indicative of corrosion or breakages

Identification of **plastic deformations** of reinforcement (e.g. necking)

Measurement of surface cracking and cracking along the length of reentrant corners (width, length, depth)

4

Pinpoint location and quantify magnitude of deterioration

Corrosion locations

Magnitude and shape of section loss from corrosion at each location

Wire break locations

Number of wire breaks at each location

5

Other behavior to detect if possible

Bond slip between steel and concrete (should have occurred at least in cutting samples)

Re-anchoring of strands (should have occurred at least in cutting samples)

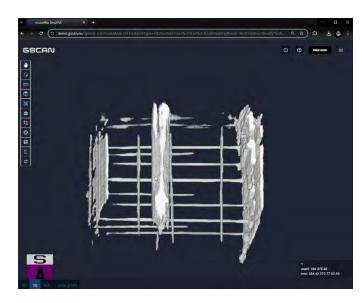
Locating and identifying physical properties

Category #1

Locating and identifying physical properties

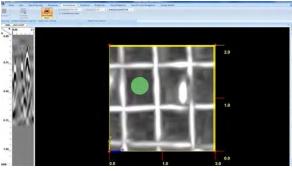
Locate and identify strands, tendons, and rebars

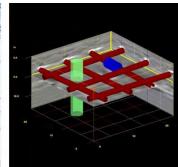
Detect the **type of duct**


Identify chemical and physical properties of the materials (**Section 3.7.5** and **3.7.6** of **CS 465**)

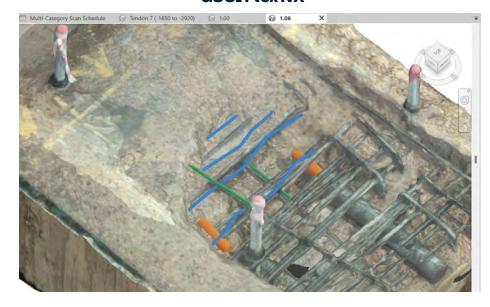
	-900	-700	-500	-300	-100	+100	+300	+500	+700	+900
+500	34	29	54	51	37	38	48	52	32	32
+300	60	56	80	38	25	50	36	19	50	34
+100	62	54	48	57	60	64	54	50	43	50
-100	83	0*	54	64	69	65	52	0*	53	48
-300	61	71	70	57	40	0*	36	36	33	34
-500	67	59	60	56	48	46	40	0*	36	40
-700	60	48	46	40	42	38	0*	38	34	60
-900	84	68	62	64	50	56	48	38	35	40

Depth of cover (mm) Note:


Cover Meter Survey:


Elcometer 331 Cover Meter

Muon Tomography: **GScan Hodoscopes Generation 1**



Ground Penetrating Radar (GPR):

GSSI Flex NX

Ground Penetrating Radar (GPR): **Proceq GP8000**

Locating and identifying physical properties

Locate and identify strands, tendons, and rebars

Detect the **type of duct**

Identify chemical and physical properties of the materials (Section 3.7.5 and 3.7.6 of CS 465)

7_Rebar 8_Rebar

82 Duct

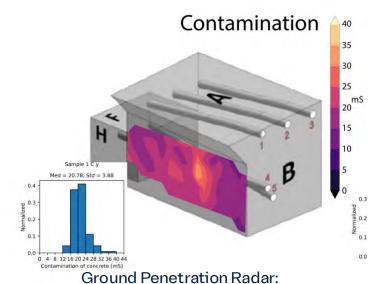
83_Duct

₩ 84_Duct

PROJECT

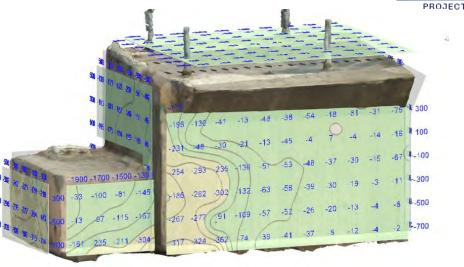
Locating and identifying physical properties

Locate and identify strands, tendons, and rebars


Detect the type of duct

Identify chemical and physical properties of the materials (Section 3.7.5 and 3.7.6 of CS 465)

Sample Location No.	Sample Location	Sample offset	Depth of carbonation (mm)	Cement content (% by mass of sample)	Chloride ion content (% by mass of cement) Depth from surface of concrete (mm)			
NO.					5-25	25-50	50-75	
1	Face A	(+X900 +Y100)	<5	21.4	0.62	0.27	0.16	
1	Face C	(-X1100 -Z700)	<5	-	1.97	1.73	1.62	
1	Face D	(-Y500 -Z700)	<5	-	1.14	1.08	0.95	
1	Face E	100mm crack distance from outer face	<5		0.86	0.93	-	
1	Face E	200mm crack distance from outer face	<5		0.74	0.97	-	
1	Face E	300mm crack distance from outer face	<5	-	0.24	0.20	-	
1	Face F	(-X1900 +Y500)	<5	-	2.90	2.35	1.89	
1	Face G	(-Y100 -Z700)	<5	-	1.19	0.64	0.12	
1	Face H	(-X1300 -Z700)	<5	-	1.11	0.88	1.06	


A determined cement content as shown were used to calculate the chloride ion conte

Chloride contamination and carbonation depth

Proceq GP8000 + Dust Sampling

Half-cell potential survey:

Proceq Profometer Corrosion

	-900	-700	-500	-300	-100	+100	+300	+500	+700	+900
+500	115	20.2	6.5	19.1	4.2	23.2	15.5	20.2	5.9	33.8
+300	57.4	7.5	58.2	2.0	20.8	19.5	6.1	10.7	11.5	3.1
+100	37.4	43.9	1.1	19.0	31.2	20.2	14.2	13.1	13.4	10.1
-100	10.36	25.2	22.1	7.9	27.2	26.1	26.8	10.1	17.1	25.5
-300	10.36	25.2	22.1	7.9	27.2	26.1	26.8	10.1	17.1	25.5
-500	80.2	32.9	19.3	27.0	39.7	33.4	23.2	12.6	22.2	20.1
-700	19.6	15.2	20.4	24.8	15.6	17.2	11.5	12.9	18.2	7.2
-900	11.6	19.2	10.3	18.9	24.3	2.9	9.7	5.7	18.6	20.2

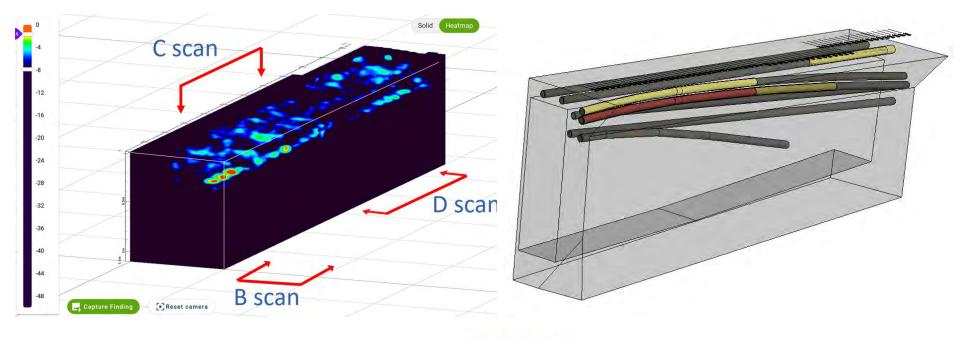
Resistivity (kΩcm)

Electrical Resistivity:

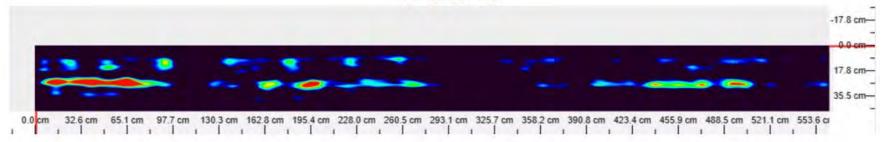
Proceq Resipod

Conditions for corrosion

Category #2


STRUCTURES MOONSHOT

2


Conditions for corrosion

Locate any **absence of duct grouting**

Identify areas where the reinforcement or the tendons are at high risk of corrosion

D SCAN

Ultrasonics (Concrete): **ELOPInsight**

Conditions for corrosion

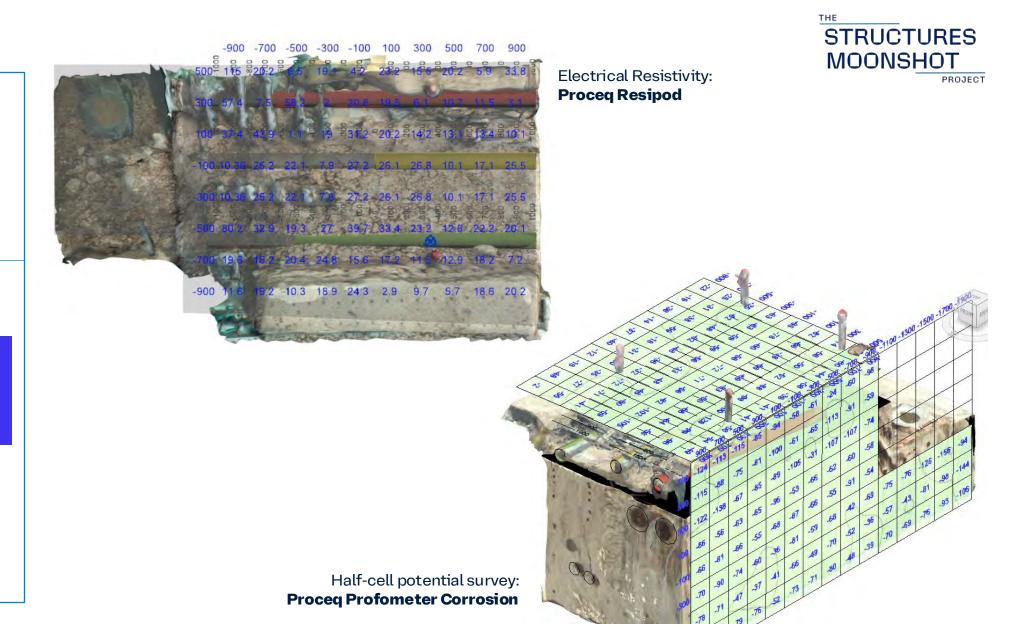

Locate any **absence of duct grouting**

Identify areas where the reinforcement or the tendons are at high risk of corrosion

Muon Tomography: **GScan Hodoscopes Generation 1**

Ultrasonic Pulse Echo: Proceq Pundit PD8050

Impact Echo: Physical Acoustics (MISTRAS Proprietary)


STRUCTURES

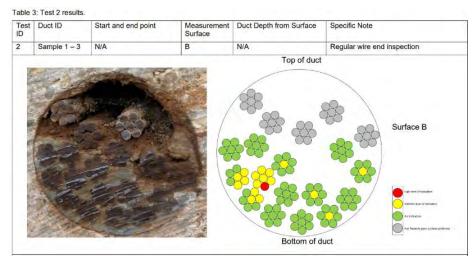
MOONSHOT

Conditions for corrosion

Locate any **absence of duct grouting**

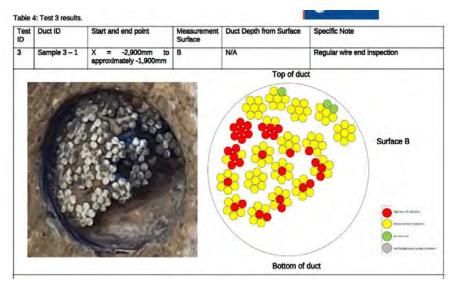
Identify areas where the reinforcement or the tendons are at high risk of corrosion

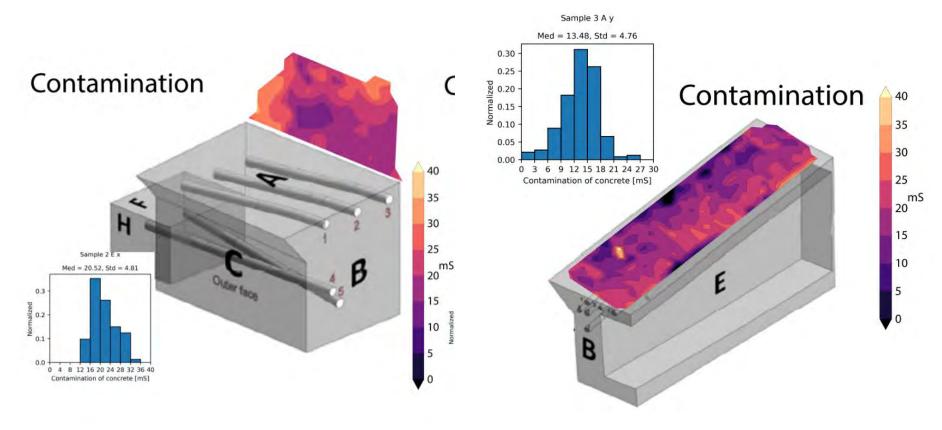
Conditions for corrosion


Locate any **absence of** duct grouting

Identify areas where the reinforcement or the tendons are at high risk ofcorrosion

Ultrasonic Measurements (Steel Tendon):





Conditions for corrosion

Locate any **absence of duct grouting**

Identify areas where the reinforcement or the tendons are at high risk of corrosion

Ground Penetration Radar:

Proceq GP8000 + Dust Sampling

Indications of damage

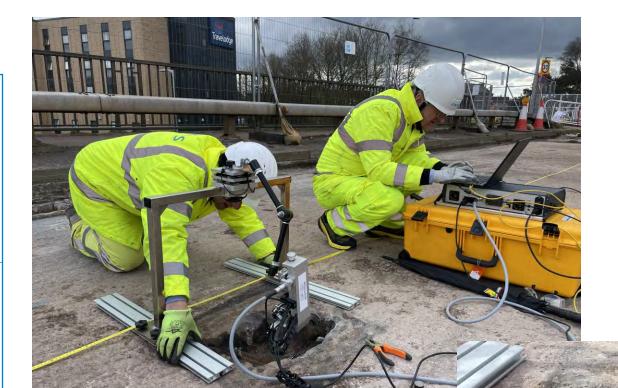
Category #3

Indications of damage

Identify **discontinuities** in reinforcing and/or prestressing steel that may be indicative of corrosion or breakages

Identification of **plastic deformations** of reinforcement (e.g. necking)

Measurement of surface cracking and cracking along the length of reentrant corners (width, length, depth)


Acoustic Emission: **EXPRESS-8 (Mistras Proprietary)**

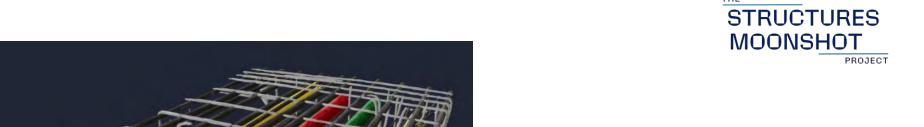
Indications of damage

Identify **discontinuities** in reinforcing and/or prestressing steel that may be indicative of corrosion or breakages

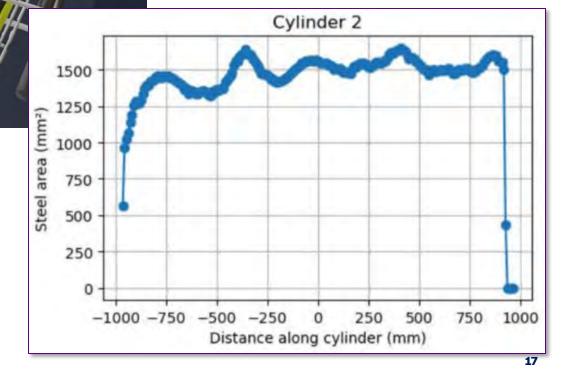
Identification of **plastic deformations** of reinforcement (e.g. necking)

Measurement of surface cracking and cracking along the length of reentrant corners (width, length, depth)

STRUCTURES MOONSHOT


X-Ray Diffractometry (XRD): **GNR Testing Proprietary**

Indications of damage


Identify **discontinuities** in reinforcing and/or prestressing steel that may be indicative of corrosion or breakages

Identification of **plastic deformations** of reinforcement (e.g. necking)

Measurement of surface cracking and cracking along the length of reentrant corners (width, length, depth)

Muon Tomography
Volume of Steel Measurements **GScan Hodoscopes Generation 2**

Indications of damage

Identify discontinuities in reinforcing and/or prestressing steel that may be indicative of corrosion or breakages

Identification of **plastic deformations** of reinforcement (e.g. necking)

Measurement of **surface** cracking and cracking along the length of reentrant corners (width, length, depth)

Pinpoint location and quantify magnitude of deterioration

Category #4

STRUCTURES

MOONSHOT

PROJEC:

4

Pinpoint location and quantify magnitude of deterioration

Corrosion locations

Magnitude and shape of section loss from corrosion at each location

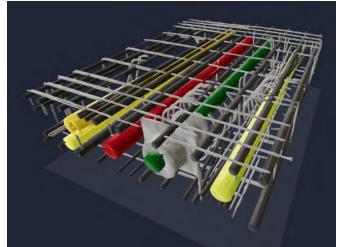
Wire break locations

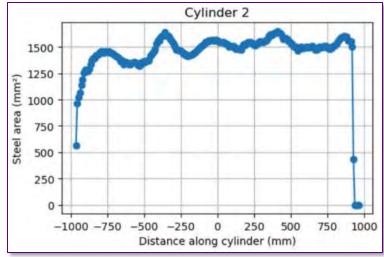
Number of wire breaks at each location

Portabkle X-Ray Fluorescence (exposed tendons only) ThermoFisher Niton XL3t FTIR Gas Monitoring (exposed tendons only) **Gasmet GT5000**

Pinpoint location and quantify magnitude of deterioration

Corrosion locations


Magnitude and shape of section loss from corrosion at each location


Wire break locations

Number of wire breaks at each location

Guided Wave (indicative) Omnia Vigor System

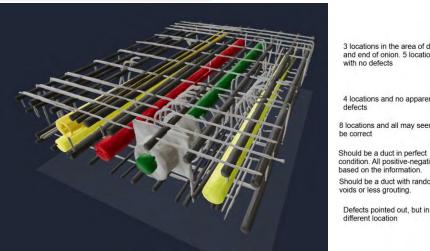
STRUCTURES MOONSHOT

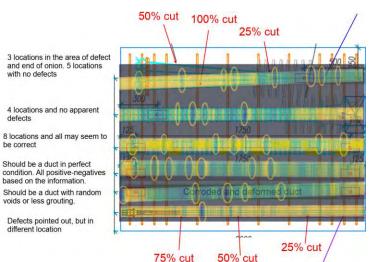
Pinpoint location and quantify magnitude of deterioration

Corrosion locations

Magnitude and shape of section loss from corrosion at each location

Wire break locations


Number of wire breaks at each location



Guided Wave (indicative)

Omnia Vigor System

Muon Tomography
Volume of Steel and Defect and Anomaly Detection
GScan Hodoscopes Generation 2

STRUCTURES MOONSHOT

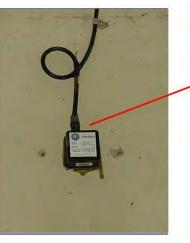
PROJECT

Pinpoint location and quantify magnitude of deterioration

Corrosion locations

Magnitude and shape of section loss from corrosion at each location

Wire break locations


Number of wire breaks at each location

Ultrasonic Guided Wave (indicative) **Mistras Proprietary Technology**

Test ID	Duct ID	Start and end point	Measurement Surface	Duct Depth from Surface	Specific Note
	Sample 3 – 4	X = -2,900mm to approximately -1,900mm	В	N/A	Regular wire end inspection
100000000000000000000000000000000000000			4	Top of di	uct
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Surface B
					engli keel di valcature. Naham keel di radicature. Na radicature. Na radicature.
				Bottom o	f duct
		100% (133) of the wires coul			
		lassed as having a medium le		tion being present.	
6 (3	wires) were clas	sed as having no indication p	resent.		

STRUCTURES
MOONSHOT

PROJECT

Acoustic Emission Monitoring e.g. **Mistras Sensor Highway III**

Other behavior to detect if possible

Category #5

Other behavior to detect if possible

Bond slip between steel and concrete

Re-anchoring of strands following wire breaks

Summary

Low Consistency
Not Applicable

Not Tested

1

Locating and identifying physical properties

Locate and identify strands, tendons, and rebars

Detect the type of duct

Identify chemical and physical properties of the materials (Section 3.7.5 and 3.7.6 of CS 465)

2

Conditions for corrosion

Locate any **absence of duct grouting**

Identify areas where the reinforcement or the tendons are at high risk of corrosion

3)

Indications of damage

Identify **discontinuities** in reinforcing and/or prestressing steel that may be indicative of corrosion or breakages

Identification of **plastic deformations** of reinforcement (e.g. necking)

Measurement of surface cracking and cracking along the length of reentrant corners (width, length, depth)

4

Pinpoint location and quantify magnitude of deterioration

Corrosion locations

Magnitude and shape of section loss from corrosion at each location

Wire break locations

Number of wire breaks at each location

5

Other behavior to detect if possible

Bond slip between steel and concrete (should have occurred at least in cutting samples)

Re-anchoring of strands (should have occurred at least in cutting samples)

Housekeeping

In case of emergency: Evacuation Point: Adjacent to the Apple Store, New Street

Conference Agenda

June 16th

WELCOME & PROJECT OVERVIEW

R&D TRIALS

AND RESULTS

9:15 Welcome & Overall Ambition

Registration

Keynote 1 - Moonshot II Project Overview 9:30

R&D Trials: Innovative Inspection Techniques Overview

RF Induced Ultrasound, Electric Impedance - Sentec

Guided Ultrasonic Waves - Omnia Integrity 11:05

11:35 Muon Tomography - GScan

O&A: Panel Session

12:30 ----- Lunch & Breakout -----

Huntingdon Viaduct NDT Trials: Overview

Ultrasonics, Tomography, Impact Echo, Ground Penetration Radar (GPR), Acoustic Emission -MISTRAS | Screening Eagle | Allied Associates

Ground Penetration Radar (GPR) - Bridgology

Climbing Crawler Robots - HausBots 14:40

14:55 NDT Trials: Additional testing results

15:10 Q&A: Panel Session

15:35 ------ Break -----

RESULTS

Data Federation and Interpretation Approach

NDT Trials: Summary of Technology Performance

17:05 Day 1 Round Up

17:15 ------ Networking Session -----

FEDERATION AND SUMMARY

NON-DESTRUCTIVE

PRESENTATIONS:

MOONSHOT FINDINGS

TESTING

STRUCTURES MOONSHOT

June 17th

Welcome & Overview of Day 2 9:10 Overview of Testing on Wickwick Bridge 9:20 GNR - X-ray Diffractometry (XRD) University of Strathclyde - Adaptive Lighting for the Inspection of Concrete Structures (ALICS) Wickwick Trials: Q&A Session Muon Tomography Trials on In-Service Structures 10:20 ----- Break -----NDT Practitioner's Toolkit Moonshot III: Network Deployment & Further Development Conclusions & Round Up 11:50 Closing Remarks

IMPLEMENTATION SESSION: TECHNOLOGY **IN PRACTICE**

KEY OUTPUTS, CONCLUSIONS, AND **CLOSING REMARKS**

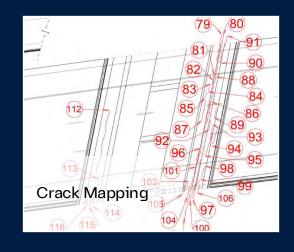
The Structure

- Located 6 Miles Northeast of Bristol
- Constructed in 1966
- Carried the A432 over the M4
- Post Tensioned Concrete
 Structure
- 180 Total Tendons

Condition

STRUCTURES
MOONSHOT

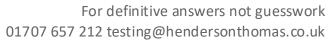
- Severe Longitudinal Cracking.
- Differential Clearance Indicating Non-Monolithic Deck.
- PTSI Identified Excessive Voiding in Pre-Tensioned Ducts.
- Various Corrosion Products.
- Significant Water Egress from Exposed Pre-Tensioned Ducts.
- Structure Assessed as Category 0 at SLS and Closed to Public.
- Catalyst for Condition not Fully Understood.
- Demolished in March 2025.



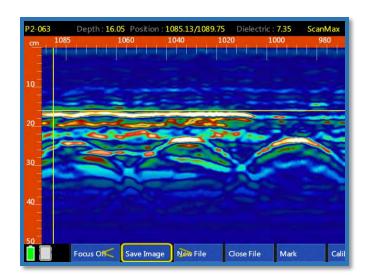
Previous Testing Conducted

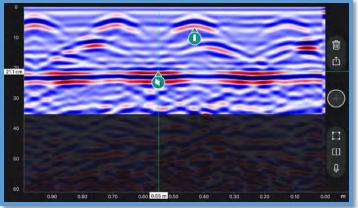
The Opportunity

- National Highways granted AtkinsRéalis the opportunity to undertake NDT Testing
- Trialling novel testing with HTA, GNR
 Analytical Group and the University of Strathclyde.
- Where possible, measurements were aligned with previous testing conducted on the structure.



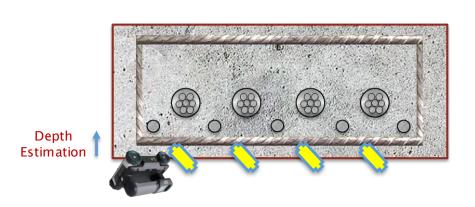
BADMINTON BRIDGE PTSI TRIAL OF NDT



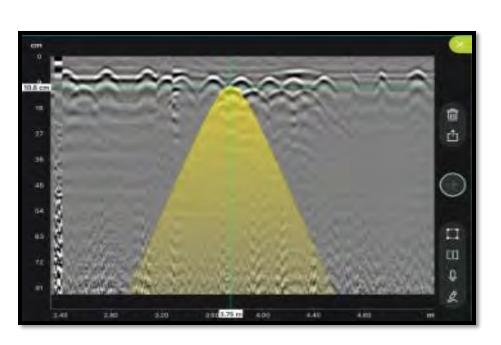

GROUND PENETRATING RADAR APPLICATION

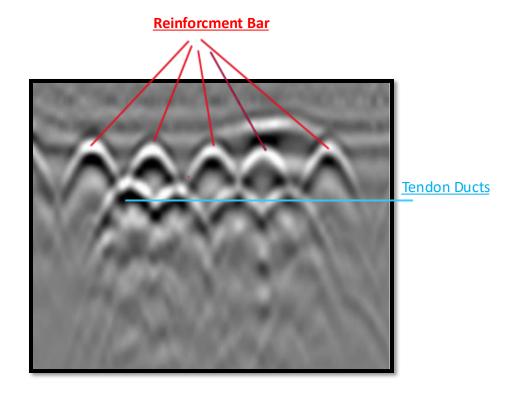
Other Applications:

- Reinforcement and post-tensioning location
- Material thicknesses
- Void Detection
- Sub-surface location
- Service location



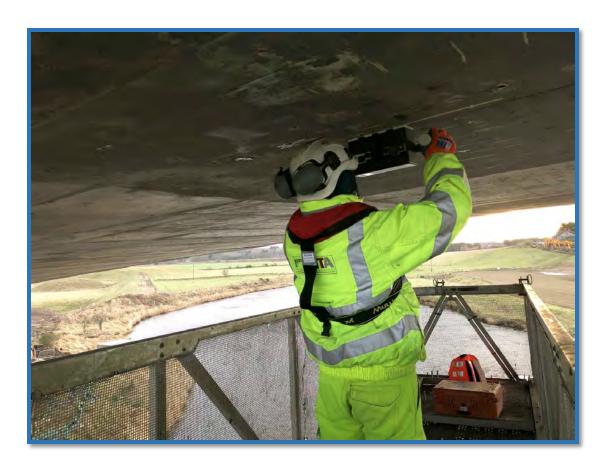
NEW HTA PTSI METHODS - GPR


Ground Penetrating Radar provides an accurate determination of the location of post tensioning ducts and provides an estimation of the depth of cover for subsequent breaking out.


This method allows post tension ducts to be found quickly and prevents damage to the ducts or tendons from blind drilling.

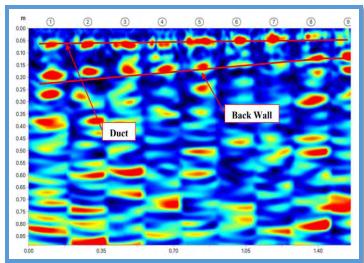
GPR & PUNDIT ULTRASOUND PULSE ECHO SCANS FOR BADMINTON BRIDGE

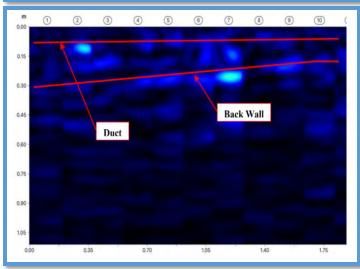
GPR scans taken over the north pier eastbound from the deck of the bridge. As these show, the four tendon ducts running through the structure and over the pier are at a depth of 106mm.


NEW HTA PTSI METHODS

Here's an example of our GPR survey that we carried out on Brent Cross flyover back in 2017. The GPR was used to locate the tendon ducts & reinforcement.

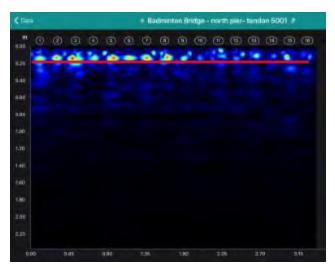
NEW HTA PTSI METHODS - TOMOGRAPHY

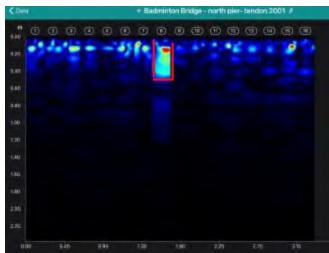

Pundit Pulse Array Live 'Tomography' is used to detect voids and defects - removing the large amount of guesswork used in the traditional approach.

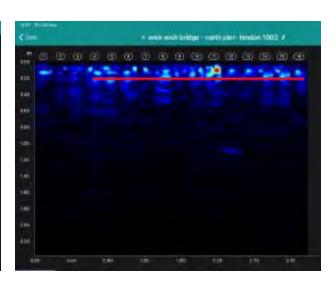

This prevents any breaking out of areas that do not require it and focuses on areas that show potential problems.

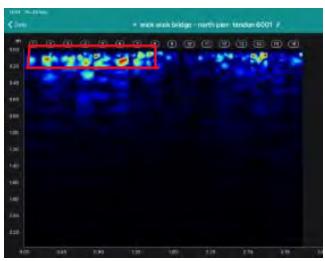
PUNDIT ARRAY LIVE 'TOMOGRAPHY'

<u>APPLICATION</u>


Other Applications:


- Determining the thickness of elements (slabs, abutment walls)
- Void detection
- Delamination determination


For definitive answers not guesswork 01707 657 212 testing@hendersonthomas.co.uk



PUNDIT ULTRASONIC PULSE ECHO RESULTS – BADMINTON BRIDGE

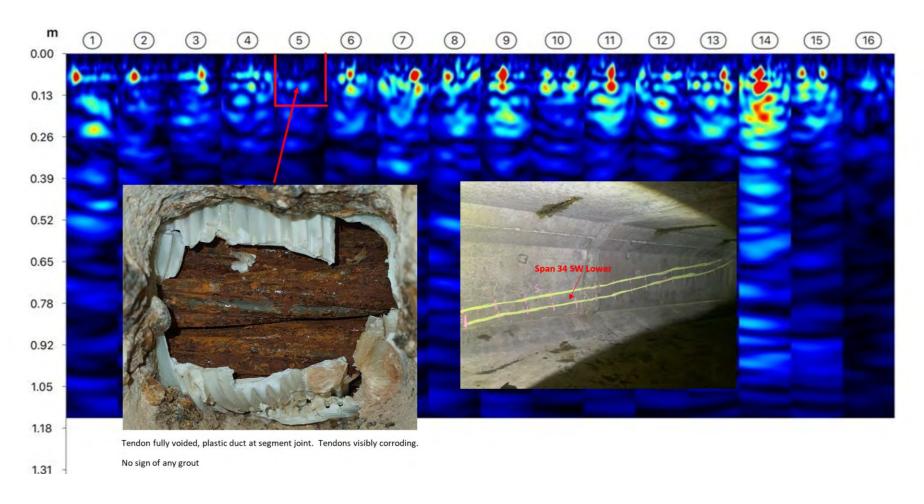
Due to the condition of the structure after the preparation of the bridge being demolished. We were unable to collect clear & accurate data from the pundit tomography. Where the concrete surface had been perforated after the removal of tarmac & waterproofing we was left with a delaminated & spalled surface. As you can see from the highlighted areas on the scans above you can see that there's no clear run of tendon ducts. This is where you can't apply even pressure through the transducers which distributes the ultrasonic waves through the concrete slab.

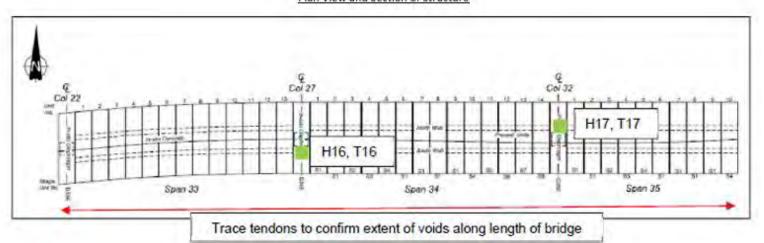


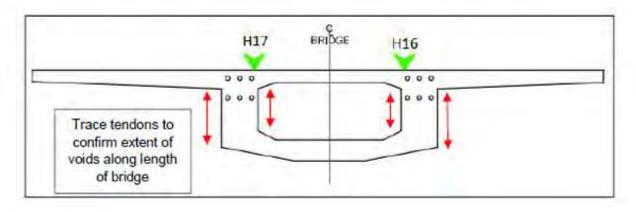
NEW HTA PTSI METHODS

Quicker, cleaner and less destructive. Breakouts are only undertaken where voids and defects are indicated.

This is a perfect example of two tendon ducts within the same structure. As you can see that location A has indicated voied areas on the Pundit and that location B has shown fully grouted ducts. We then carried out two inspections on both areas to calibrate our findings to the Pundit tomography. As you'll see that the tomography was accurate and we was able to pin point the correct areas without causing unwanted destructive works

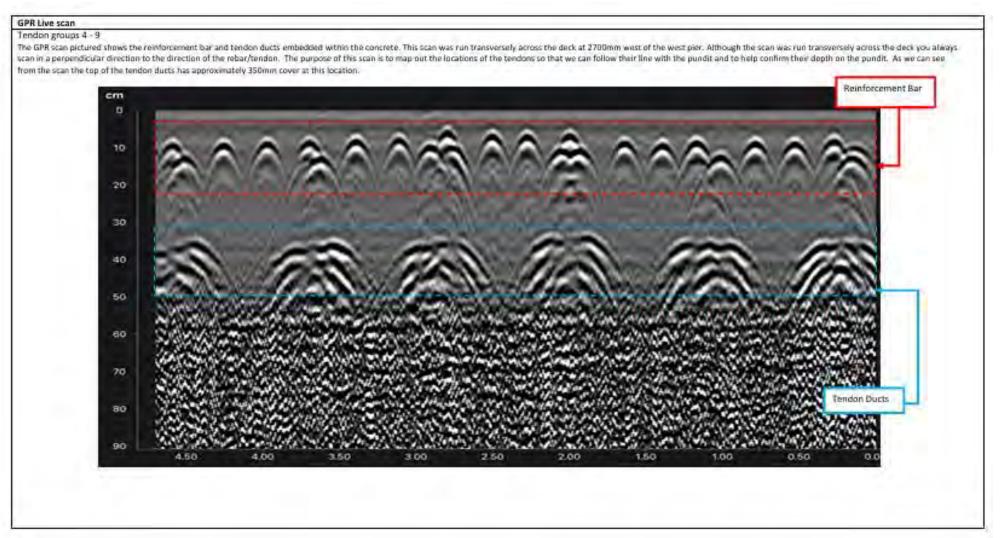


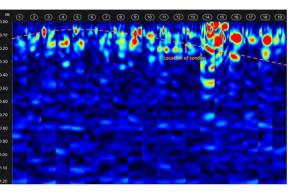

GPR THEN TOMOGRAPHY THEN EXPOSE

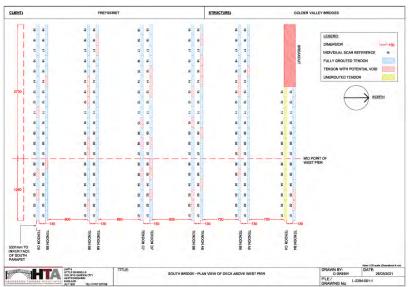

We have another example of a voided tendon duct as shown in grid 5.

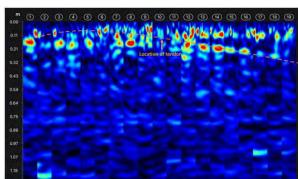
EXAMPLE FOR NDT'S FROM THE GOLDEN VALLEY

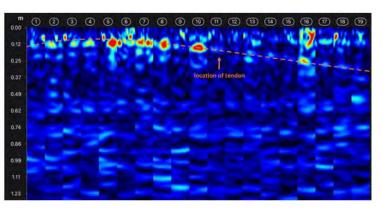
Plan View and Section of Structure

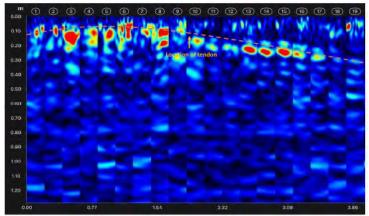


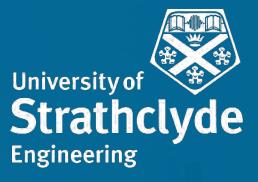

For definitive answers not guesswork 01707 657 212 testing@hendersonthomas.co.uk


GOLDEN VALLEY GPR SURVEY






GOLDEN VALLEY TOMOGRAPHY RESULTS

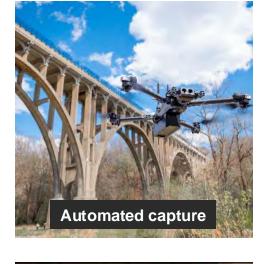


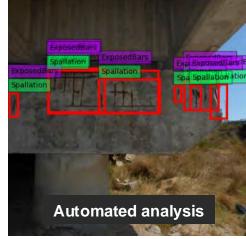
For definitive answers not guesswork 01707 657 212 testing@hendersonthomas.co.uk

Wick Wick Viaduct - Structures Moonshot

ALICS: Adaptive Lighting for the Inspection of Concrete Structures

Department of Civil and Environmental Engineering, University of Strathclyde


Presented by:


Prof Rebecca J Lunn MBE FRSE FREng FICE FIE, rebecca.lunn@strath.ac.uk
Dr Hamish Dow, hamish.dow@strath.ac.uk

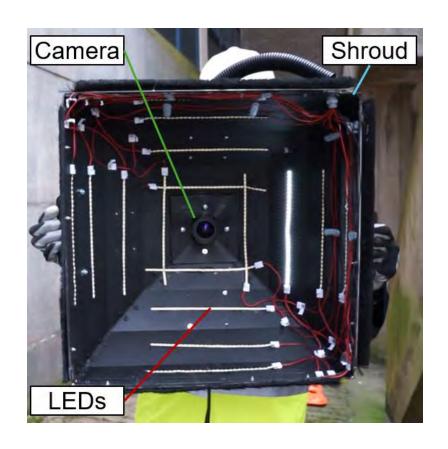
Lighting-assisted Inspections

- Al-powered algorithms can inspect captured inspection images.
- However, these methods are challenged by shadows and inconsistent lighting:

False cracks

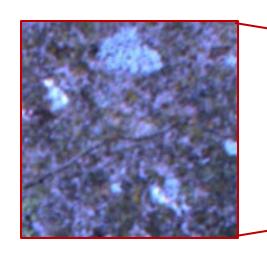
Lighting-assisted Inspections

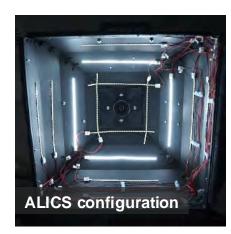
Diffused lighting

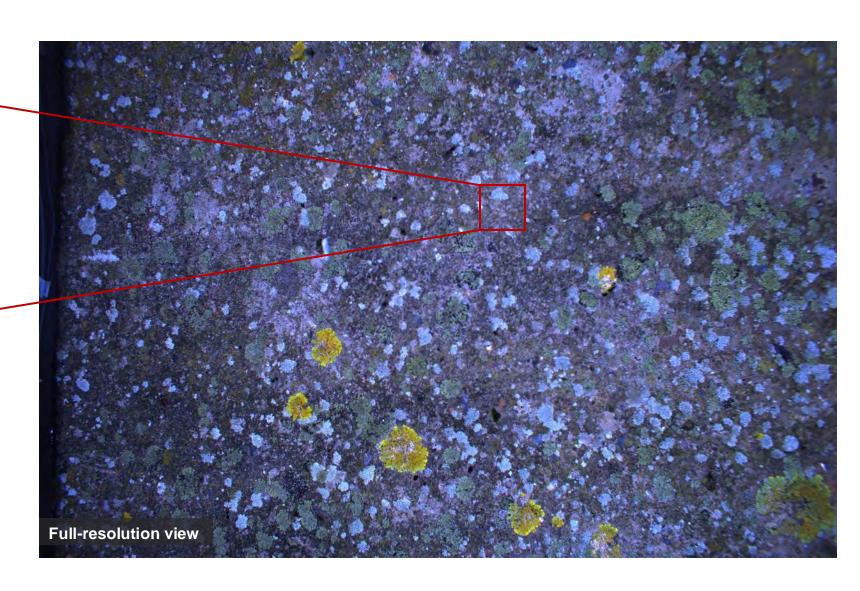


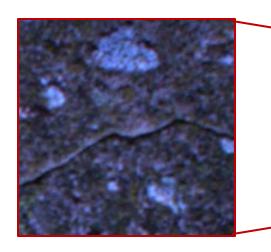
Directional lighting

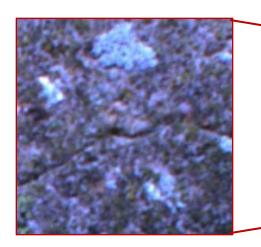
ALICS Hardware

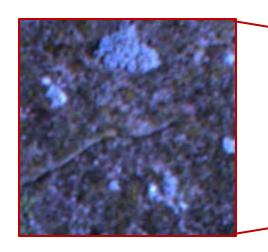

ALICS: Adaptive Lighting for the Inspection of Concrete Structures

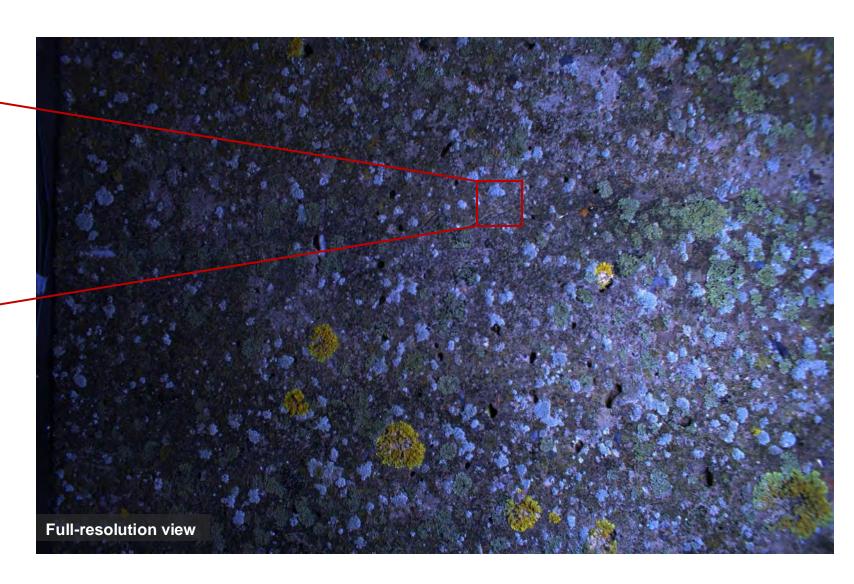


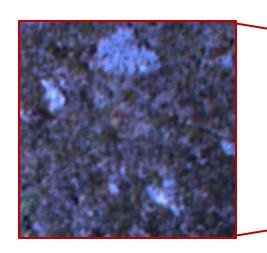


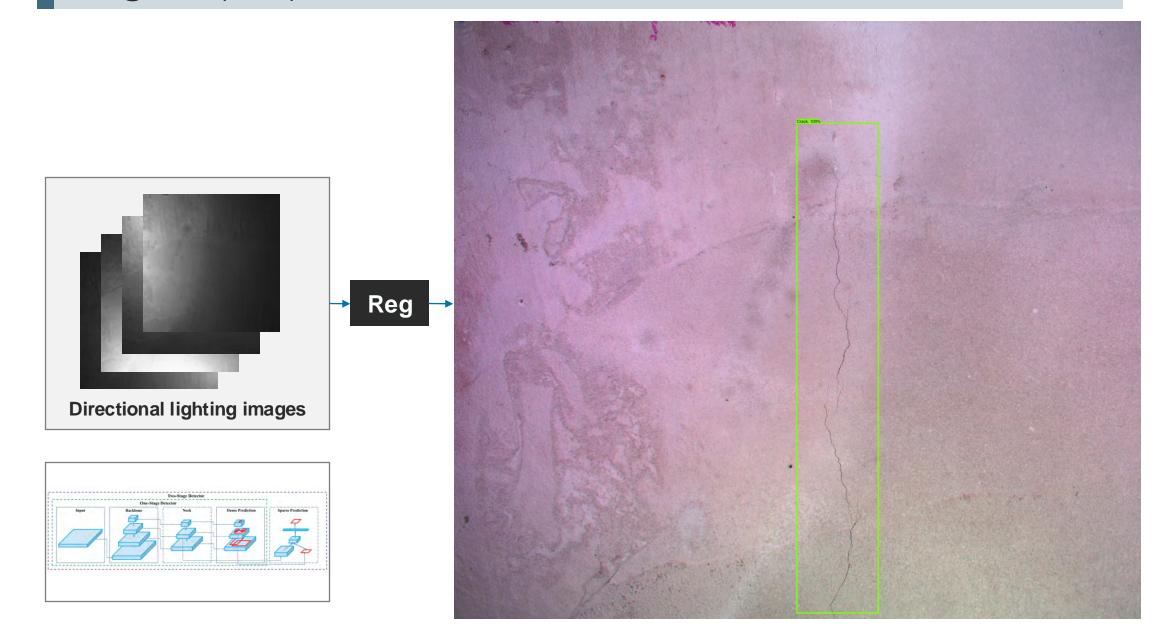

Diffused Lighting

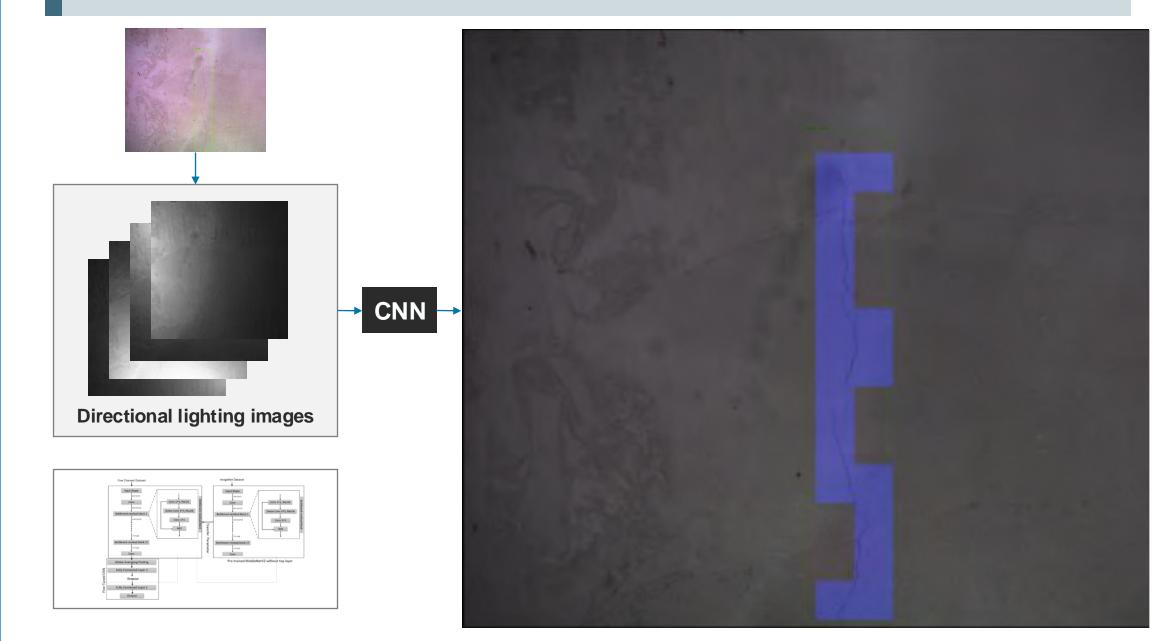

Below Lighting

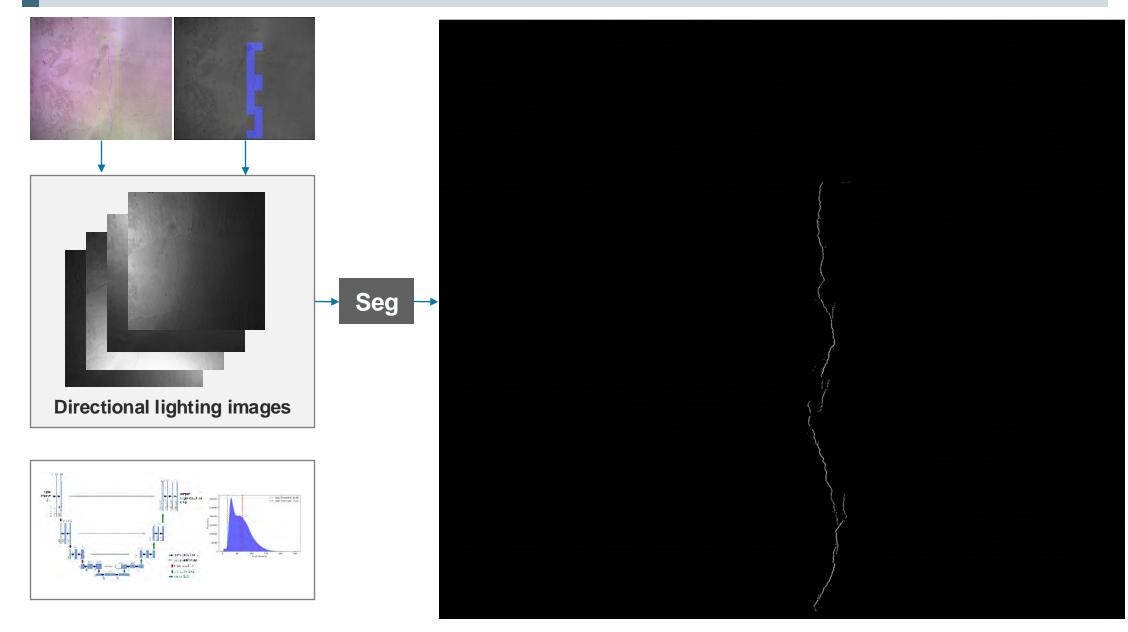

Above Lighting



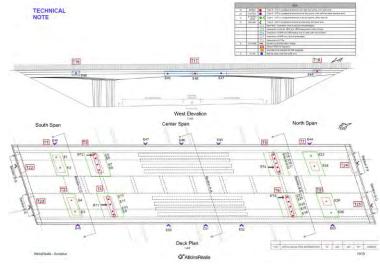

Right Lighting

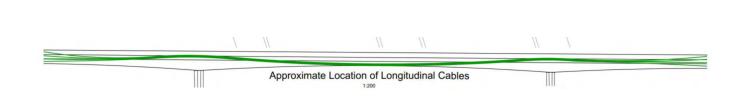

Left Lighting




Region-proposal Network

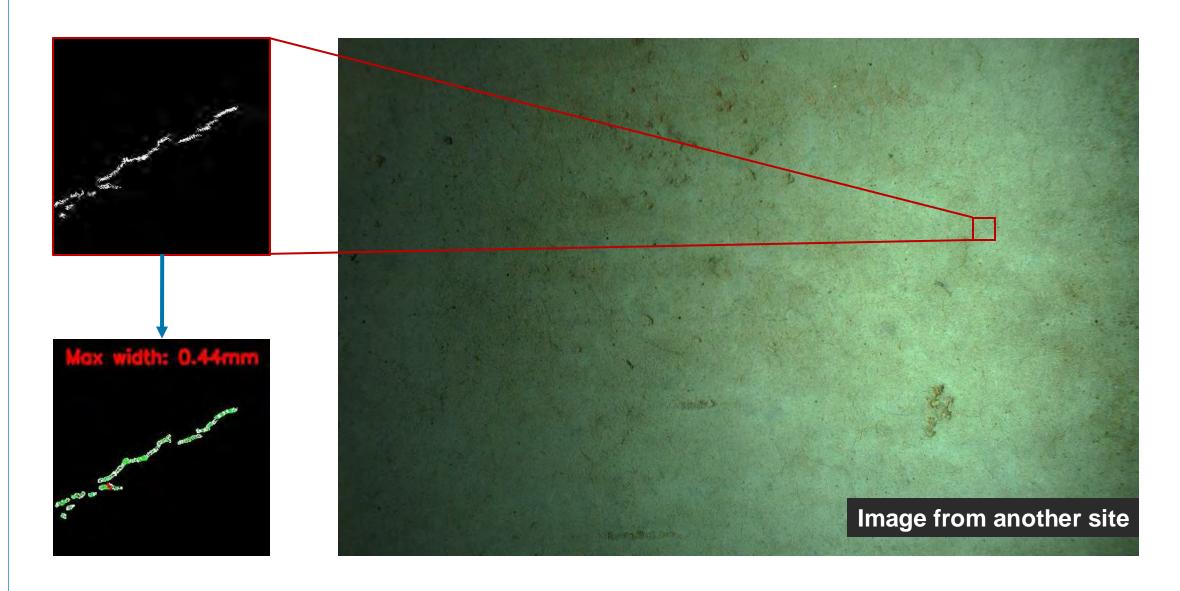
Convolutional Neural Network


Segmentation (Grey-box)

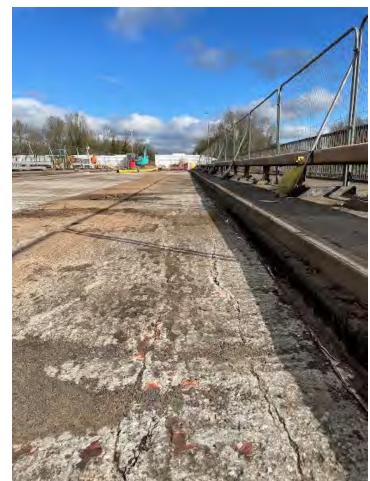


The site:

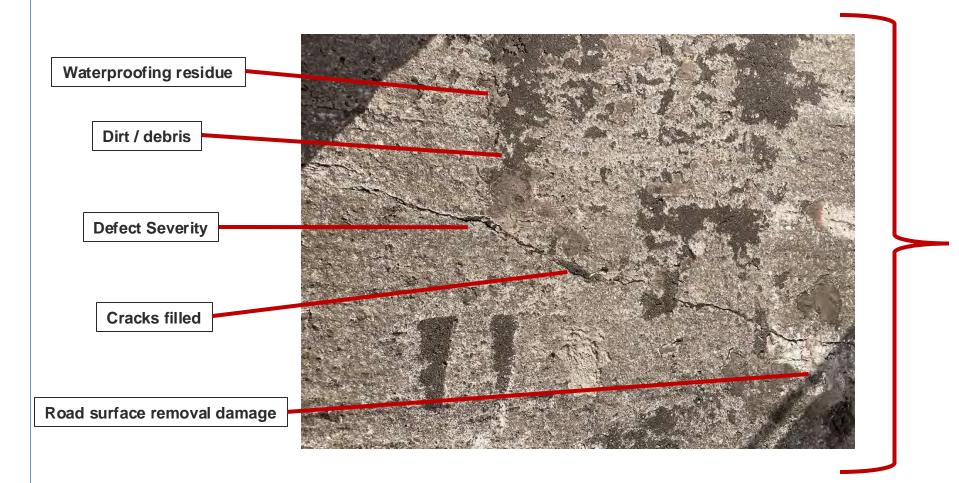
- Wick Wick A432 Badminton Road Viaduct (M4 Crossing)
- Post-tensioned concrete bridge
- Constructed in 1966
- Closed June 2023

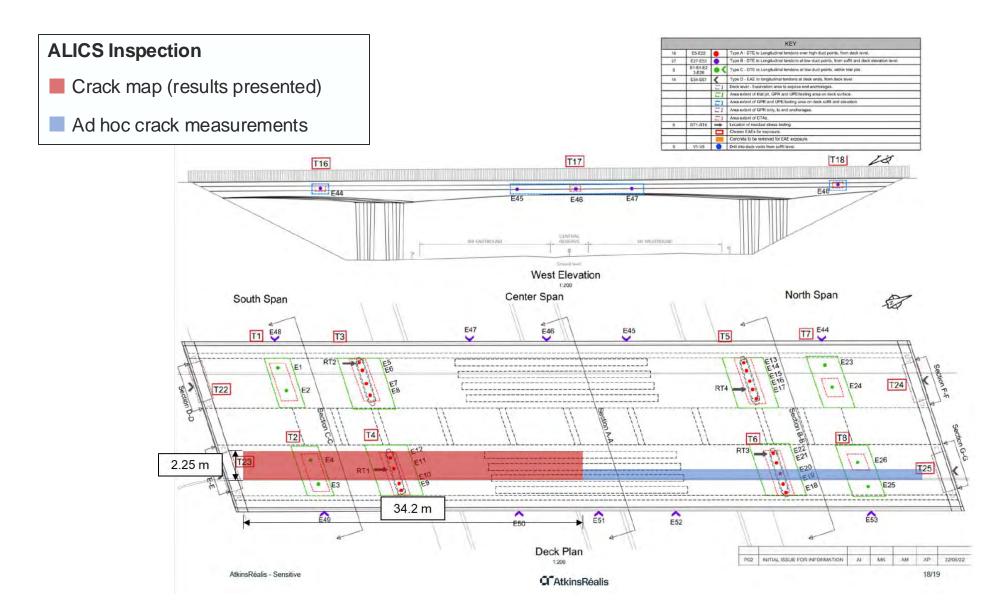


Bridge Soffit



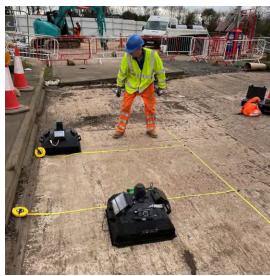
Previous work


Bridge Deck – Day of Inspection



Bridge Deck – Day of Inspection

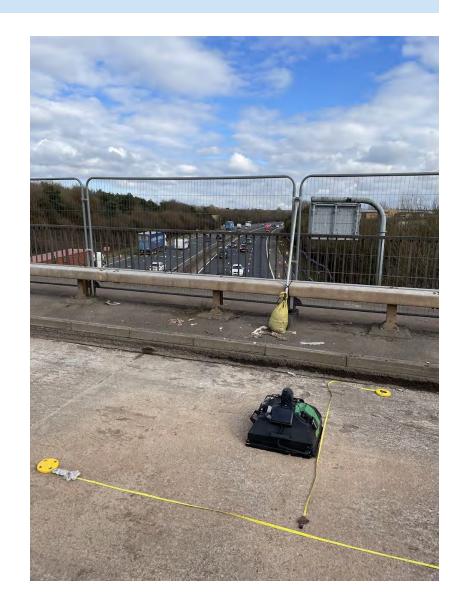
Challenges:

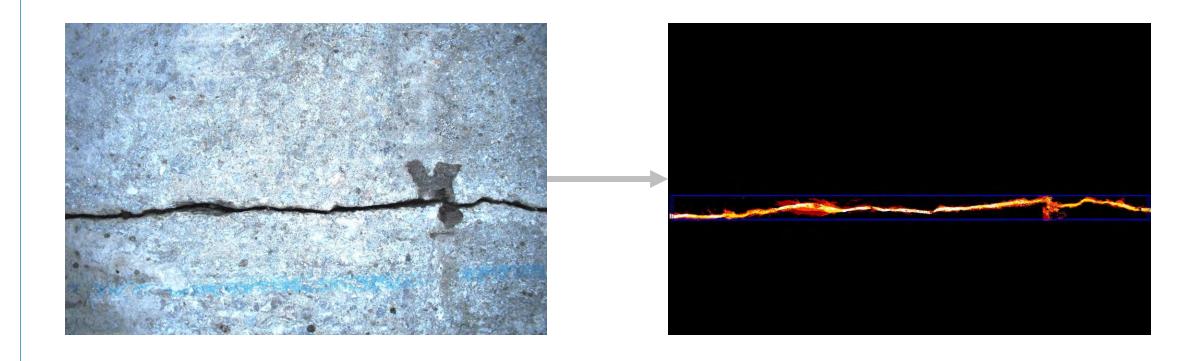


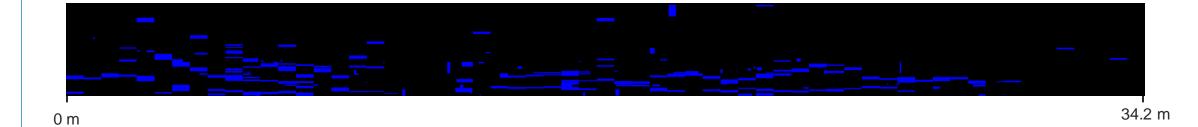
Inspection Method

Inspection Method

Crack map data:


- 7,600 full-resolution images captured in under 5 hours
- ALICS FOV: 450 mm x 270 mm




Inspection Method

Crack map data

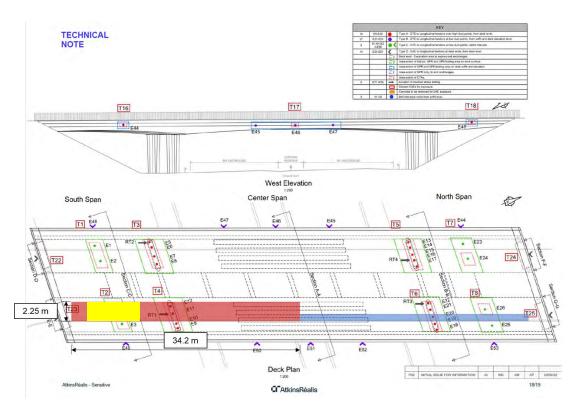
Results

Full results: cracked regions

0 m

Results

Full results: cracked pixels (binary)

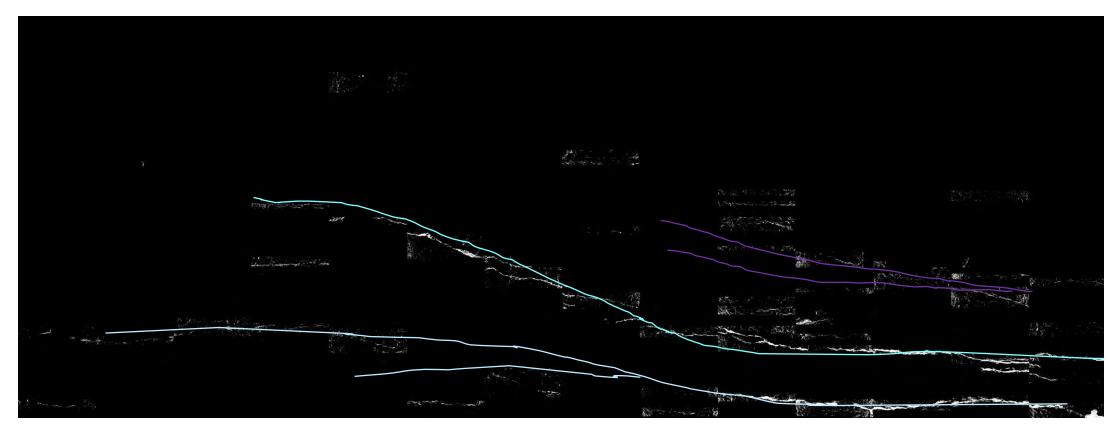

34.2 m

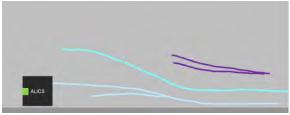
Results

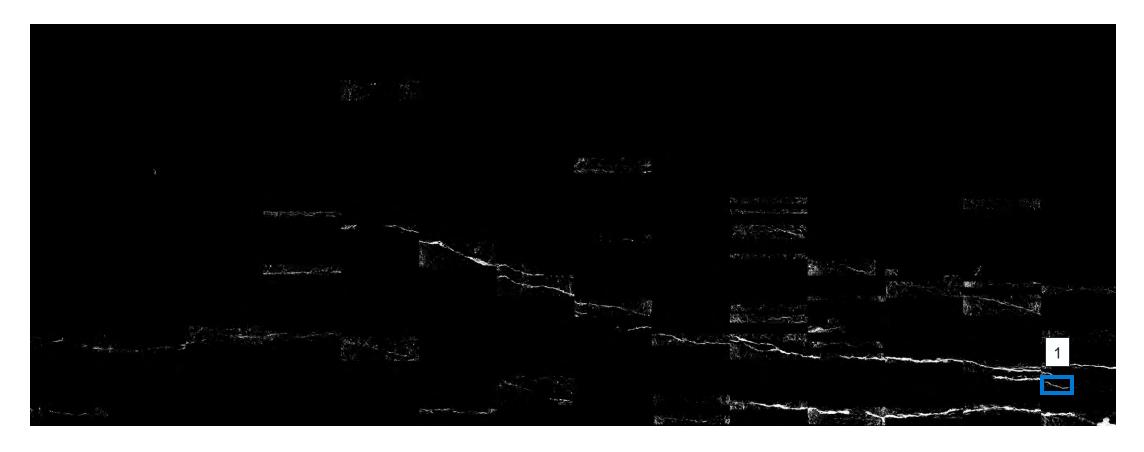
Chainage: 3.3 m - 9.9 m

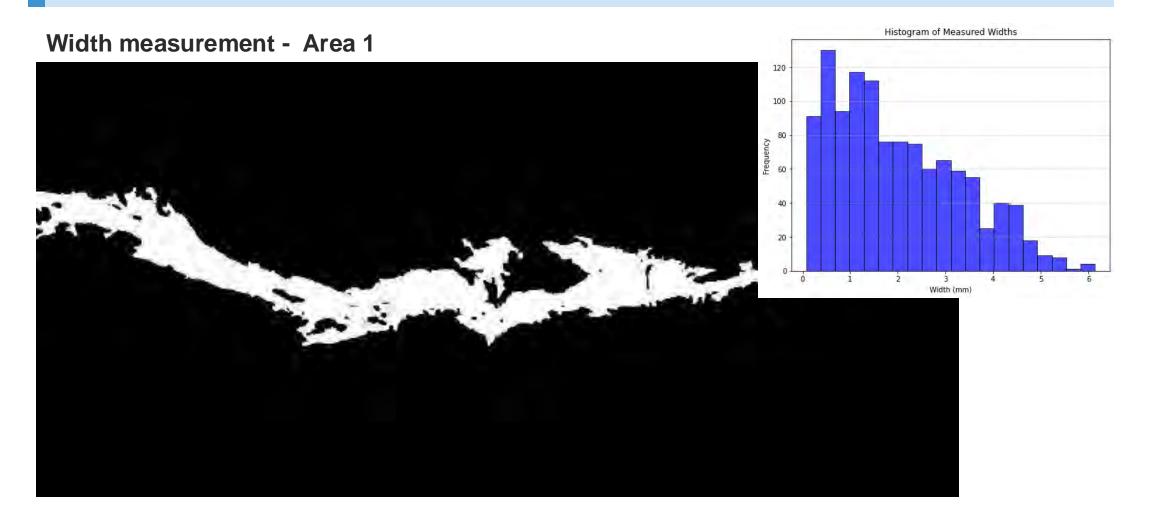
Chainage: 3.3 m - 9.9 m

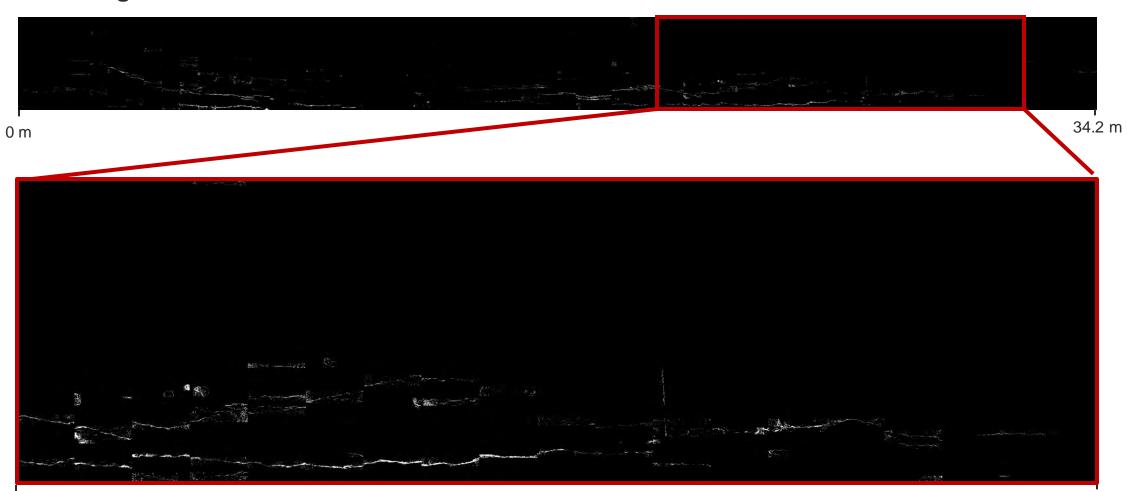
ALICS Inspection


Chainage 3.3 m − 9.9 m

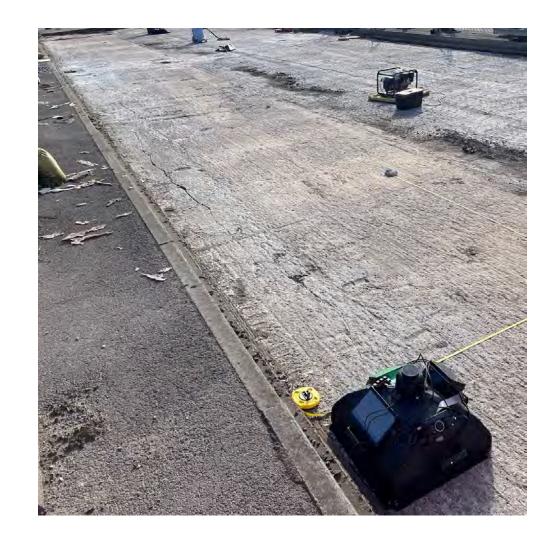

Chainage: 3.3 m - 9.9 m




Chainage: 3.3 m - 9.9 m



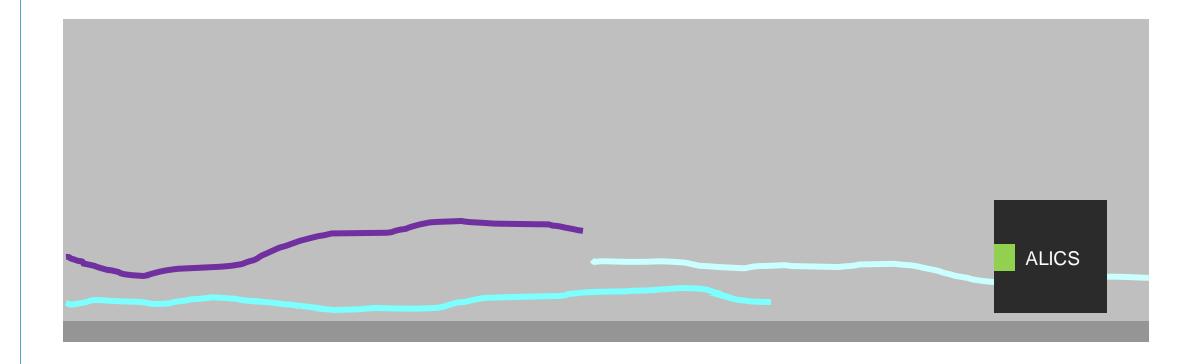
Width measurement


Chainage: 19.8 m - 31.5 m

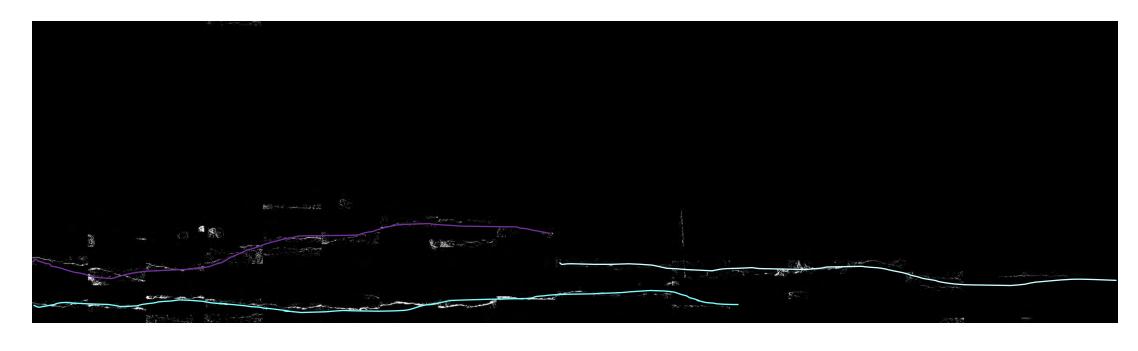
3.3 m

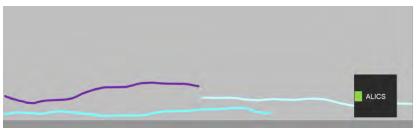
Chainage: 19.8 m - 31.5 m

ALICS Inspection

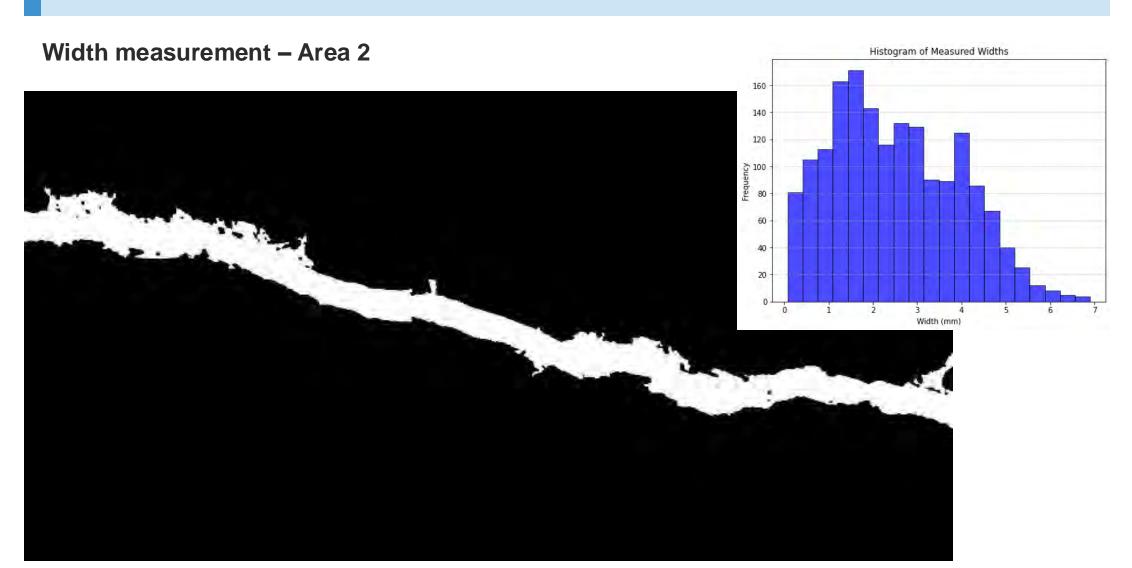

Chainage 19.8 m – 31.5 m

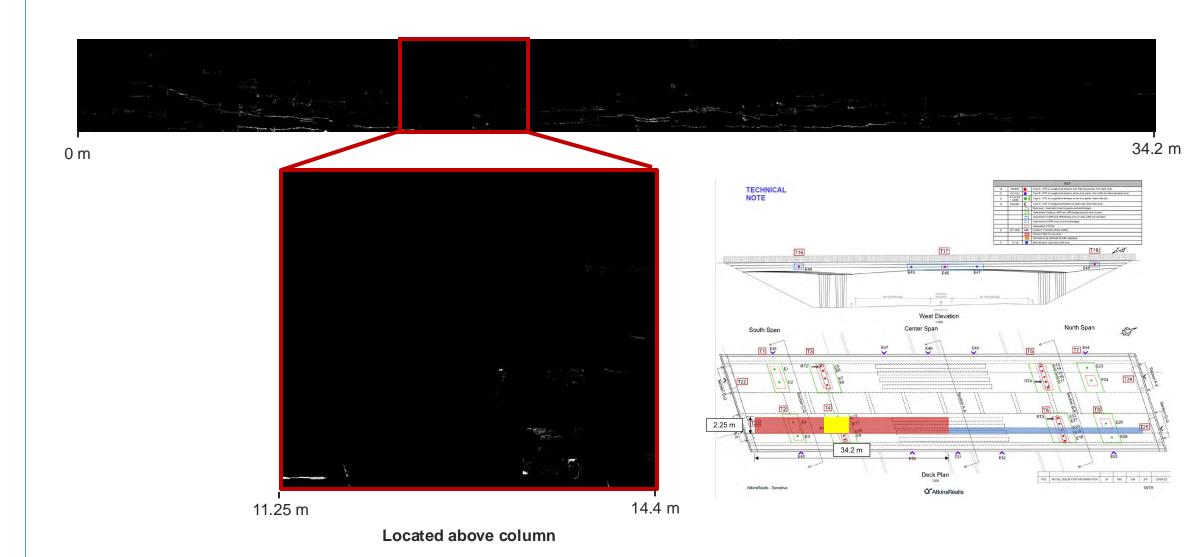
Chainage: 19.8 m - 31.5 m





Chainage: 19.8 m - 31.5 m

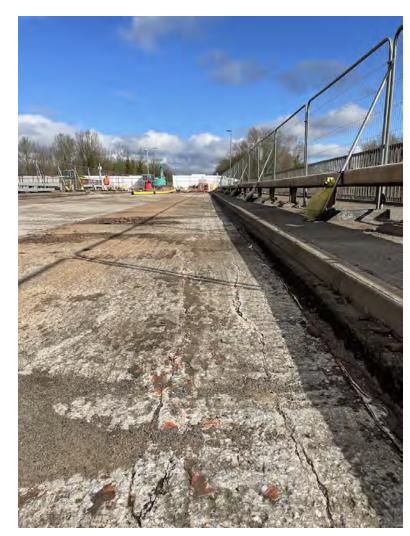

Chainage: 19.8 m - 31.5 m



Width measurement

Chainage 11.25 m – 14.4 m (no cracking)

Chainage 11.25 m - 14.4 m


No cracking at cable high point above column

Approximate Location of Longitudinal Cables

Conclusions

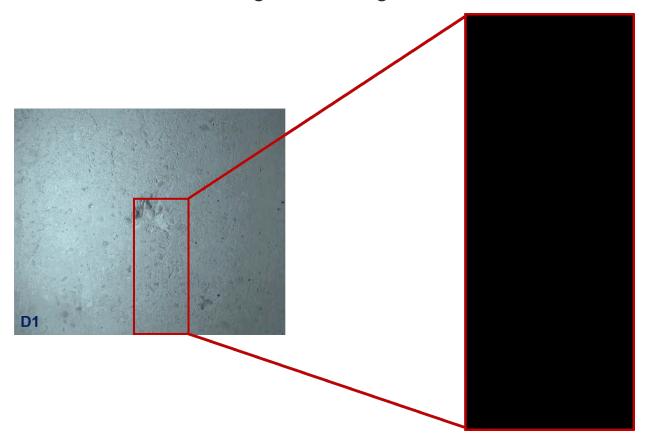
Soffit

Deck

Conclusions

Summary:

- Lighting-enhanced concrete inspection device.
- Deployed at Wick Wick Viaduct.
- Produced crack map of 76 m² in under 5 hours.
- All major defects identified.
- Thank you to:



Future Development

- ALICS allows inspection interval monitoring.
- This was not tested in this trial due to bridge demolition.
- Wide-angle and sub-mm monitoring of cracking on critical elements of a structure (e.g. half-joint).

Future Development

Collaboration opportunities:

- Inspect at a time interval to track defect changes.
- Compare with human inspector reports.
- Bridge soffit with smoother surface and thinner cracks.
- Monitoring of critical areas (e.g. half-joints).
- Robotic deployment of the system.

Commercial work:

- Commercialisation project started October 2024.
- Spin-out in progress.
- User trials and feedback.

University of Strathclyde Engineering

Agenda

1.

Overview of the project

4.

Outcom<u>es</u>

2.

Bridges

5.

Lessons learnt

3.

Deployment

6.

Other trials of muon technology

Estonian Transportation Administration project

Experimental development or the assessment for functional and structural condition of existing bridges

Supported by EU Cohesion Policy 2021–2027

Overview

Motivated by Structures Moonshot project and pushed by GScan

1.

Current situation

- Decisions based on visual inspections
- Simple NDT occasionally used during design phase

2.

Duration 16 months and three stages, based on complexity

- Simple structure
- PT structure
- Substructure

3.

Demonstration of MFT and how it affects the sustainability

- More accurate decision making
- Input for design

GScan motivation

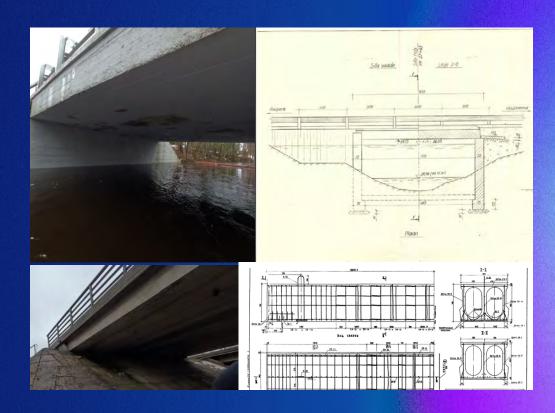
From laboratory to reality

Maximise

- Muon tracking efficiency
- Safety
- Resolution

Minimise

- Measurement time
- Human intervention
- Traffic interruption

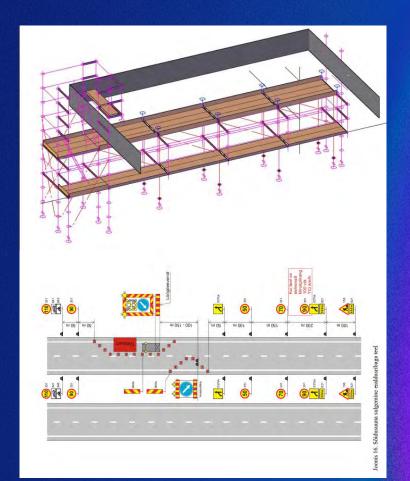

Bridge selection

Main objective of the first phase?

Can we see through the full cross-section

Structure should be

- At least 50 years old
- Simply supported
- Thickness at least 500 mm
- Common or important



Deployment

Outsource as much as possible to understand the market readiness

Planning

- Positioning the scanners
- Power
- Traffic management
- Security
- Connectivity

GSCAN

Deployment

GScan technology

- Common cargo vehicle for transport
- Two man lift on top of the bridge
- Lifting equipment for under bridge installation

Deployment

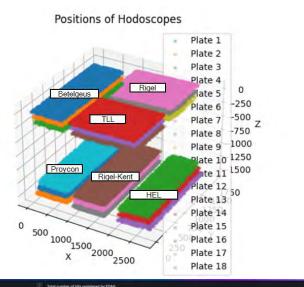
External "findings"

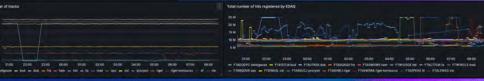
- Diesel generator
- 4G/5G cellular

Deployment

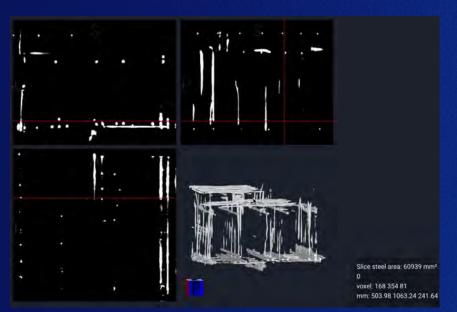
Why we have the tent?

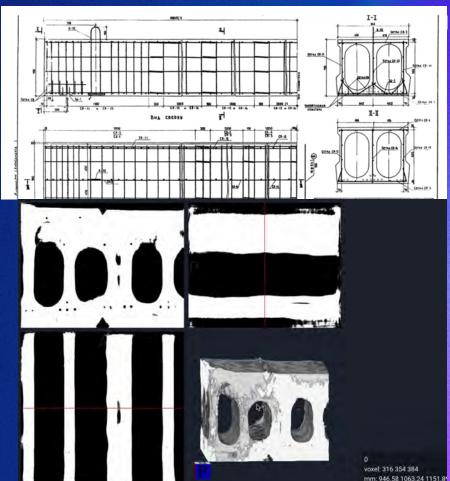
- Safety
 - o Traffic
 - Visitors
 - Weather

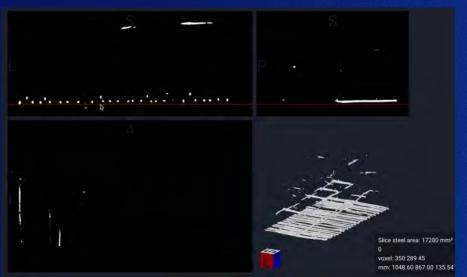

Data acquisition

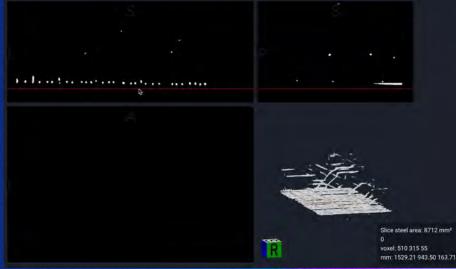

- Position data
- Active monitoring
- 5 minute chunks for data transfer

Measurement efficiency


- 88% first bridge
- 75% second bridge
 - External factors




Outcome Jõgisoo II



Outcome - Munalaskme

Lessons learnt

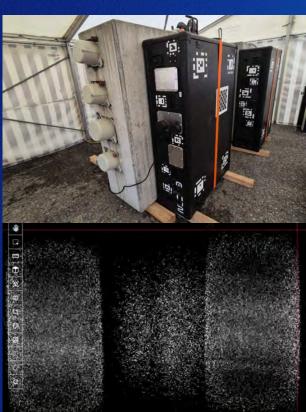
Real bridges here we come

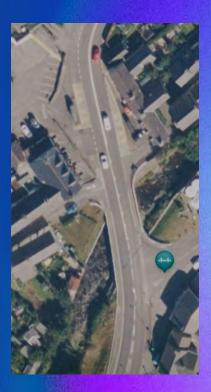
Hardware is robust and can be moved around on bridges

- Accessibility is still a challenge
- Traffic management will be a limitation
- Connectivity and power will remain the main concerns for successful measurements

To further improve we need to gather more data from real bridges

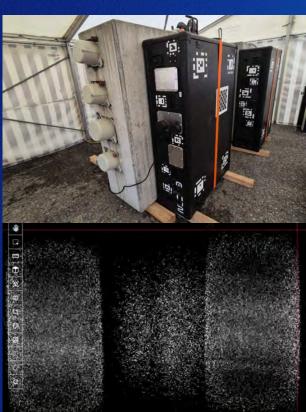
- To test further use cases and identify limits
- Characterise additional materials
- Identify uncertainties and keep learning

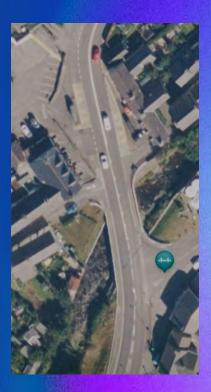



Other developments

GSCAN

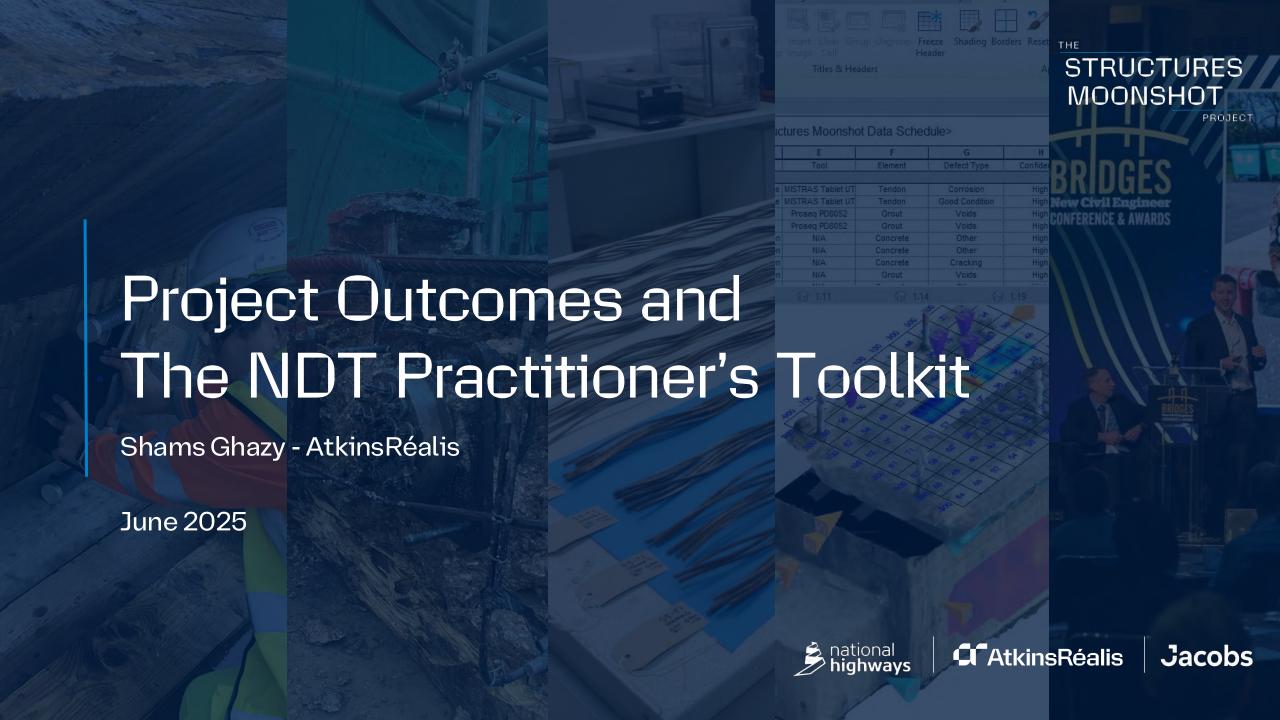
Germany, Switzerland and Wales





GSCAN

Germany, Switzerland and Wales



Thank you! Questions?


SPATS2-TO321_AJJV_SBR_XX_DO_CB-0001

R&D Trials – Development of Innovative Inspection Techniques for Post-Tensioned Structures

This report covers:

- · Sentec report observations summary
- · Sentec technique review
- · Omnia report observations summary
- Omnia technique review
- Muon tomography overview
- Recommendations for further research & development on the trialled techniques

SPATS2-TO321_AJJV_SBR_XX_DO_CB-0002

Huntingdon Viaduct NDT Trials and Interpretive Report

This report covers:

- Huntingdon trials background and deployment methodology
- Validation methodology
- Factual reporting summary of all NDT outputs received during the Huntingdon Trials
- · Intrusive inspection results summary
- NDT data federation and analysis.
- · Results interpretation of all NDT trialed on the Huntingdon Samples

SPATS2-TO321_AJJV_SBR_XX_DO_CB-0003

Huntingdon Viaduct NDT Trials and Interpretive Report

This report covers:

- Omnia further trials results
- Omnia technique development through further trials
- Muon tomography further trials results
- Muon tomography development through further trials
- Additional technologies trialed on Wickwick bridge: results and interpretation

SPATS2-TO321_AJJV_SBR_XX_DO_CB-0004

Structures' Moonshot – Technology Performance Summary and Practitioner Toolkit for NDT in Post-Tensioned Structures

This report presents a summary of all technologies trialed as part of the second phase of the Structures Moonshot project, bringing in key outcomes from all reports above. The report includes:

- Technology review and appraisal across all trials Hierarchy of NDT tools
- Recommendations for integration, further development of technologies, data management, and competence management
- · Technology single-page profiles
- · Conclusions and Summary

SPATS2-TO321 AJJV SBR XX DO CB-0001

R&D Trials – Development of Innovative Inspection Techniques for Post-Tensioned Structures

This report covers:

- · Sentec report observations summary
- Sentec technique review
- · Omnia report observations summary
- Omnia technique review
- · Muon tomography overview
- Recommendations for further research & development on the trialled techniques

SPATS2-TO321_AJJV_SBR_XX_DO_CB-0002

Huntingdon Viaduct NDT Trials and Interpretive Report

This report covers:

- Huntingdon trials background and deployment methodology
- Validation methodology
- Factual reporting summary of all NDT outputs received during the Huntingdon Trials
- · Intrusive inspection results summary
- · NDT data federation and analysis.
- Results interpretation of all NDT trialled on the Huntingdon Samples

SPATS2-TO321_AJJV_SBR_XX_DO_CB-0003

R&D Trials – Further Development and Validation of Innovative Inspection Techniques

This report covers:

- Omnia further trials results
- Omnia technique development through further trials
- Muon tomography further trials results
- Muon tomography development through further trials
- Additional technologies trialed on Wickwick bridge: results and interpretation

SPATS2-TO321 AJJV SBR XX DO CB-0004

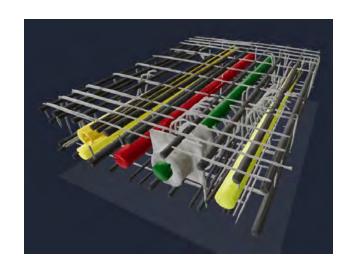
Structures' Moonshot – Technology Performance Summary and Practitioner Toolkit for NDT in Post-Tensioned Structures

This report presents a summary of all technologies trialed as part of the second phase of the Structures Moonshot project, bringing in key outcomes from all reports above. The report includes:

- Technology review and appraisal across all trials Hierarchy of NDT tools
- · Recommendations for integration, further development of technologies, data management, and competence management
- Technology single-page profiles
- · Conclusions and Summary

The NDT Practitioner's Toolkit

Preview


Taking Stock and Moving Forward

'Working here in the US, I've found that each NDT supplier will say their technology is the right one. Results from your objective evaluation and testing of each one will be invaluable for the transportation industry as we seek to use these tools to evaluate and rehabilitate ageing structures'

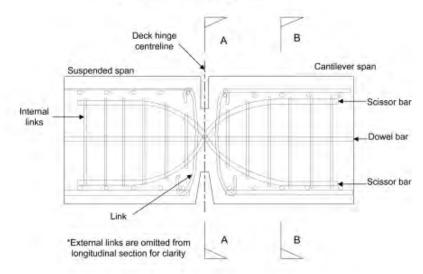
Guided Wave

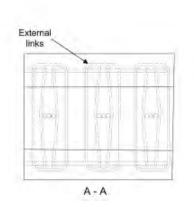
Muon Tomography

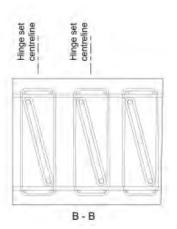
Muon Tomography – Huntingdon Sample 2 Validation

Deployment at Priority Risk Structures (1 – Post-tensioned Structures)

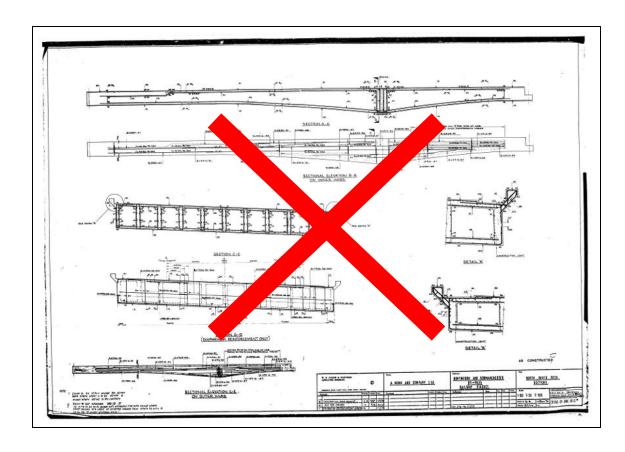
Deployment at Priority Risk Structures (2 – Half-joint Structures)

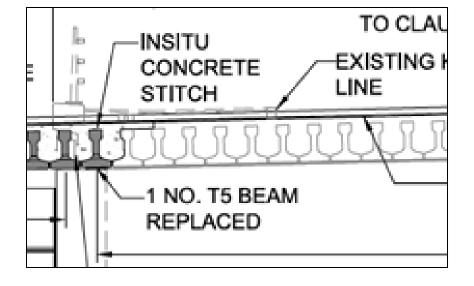



Deployment at Priority Risk Structures (3 – Hinge-deck Structures)



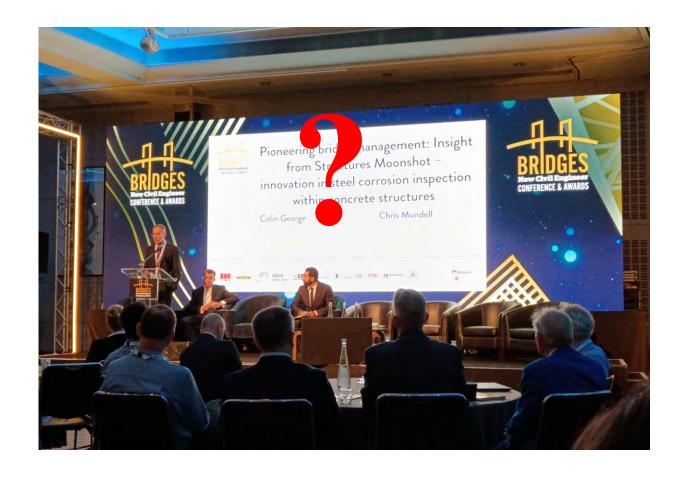
Other trials under consideration (1)




Suspension Bridge Cables

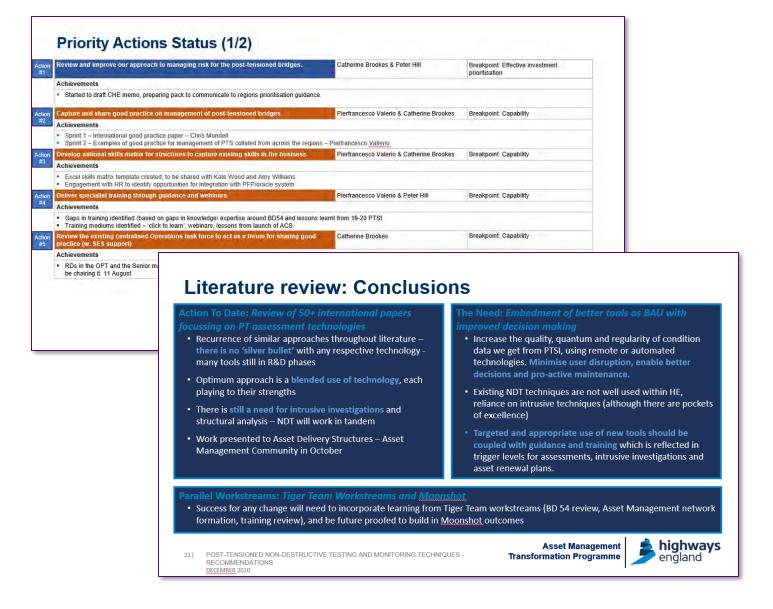
Thaumasite Detection

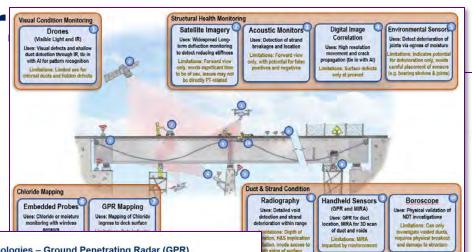
Other trials under consideration (2)



Structures with incomplete as-built records

Modifications to structures with unknown foundations


Moonshot Conference 2.0

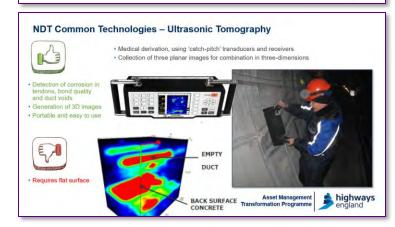

In 2020, National Highways' (then Highways England's) Post Tensioned Bridge "Tiger Team" investigated the state of the nation following the A52 Clifton bridge closure and increases in global incidents, with a goal to:

- Review and improve their approach to managing these complex structures, including prioritisation
- Capture best practice on their management
- Develop a national skills matrix
- Deliver specialist training
- Understand the current position and share knowledge where it is needed

The Tiger Team commissioned a global literature review, which covered +40 papers discussing PT assessment technologies globally

Key Findings:

- Recurrence of similar approaches throughout literature – there is no 'silver bullet' with any respective technology
- Optimum approach is a blended use of technology, each playing to their strengths
- Cannot yet safely remove the need for intrusive investigations or structural analysis - NDT will work in tandem
- Much of the research is contradictory, with varying capabilities between papers
- Much research is limited to laboratory trials or for external ducts



Asset Management Transformation Project

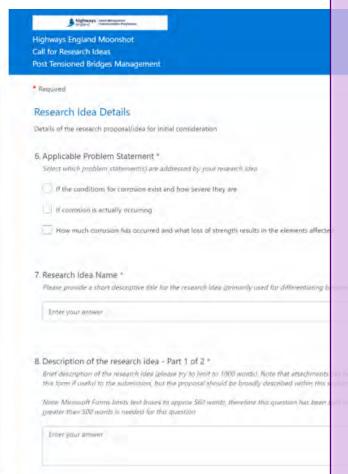
Post-Tensioned Non-Destructive Testing and Monitoring Techniques - Assessment of Available Methodologies

Highways England

10th September 2020

5195381-ATK-ZZ-DO-S-0001

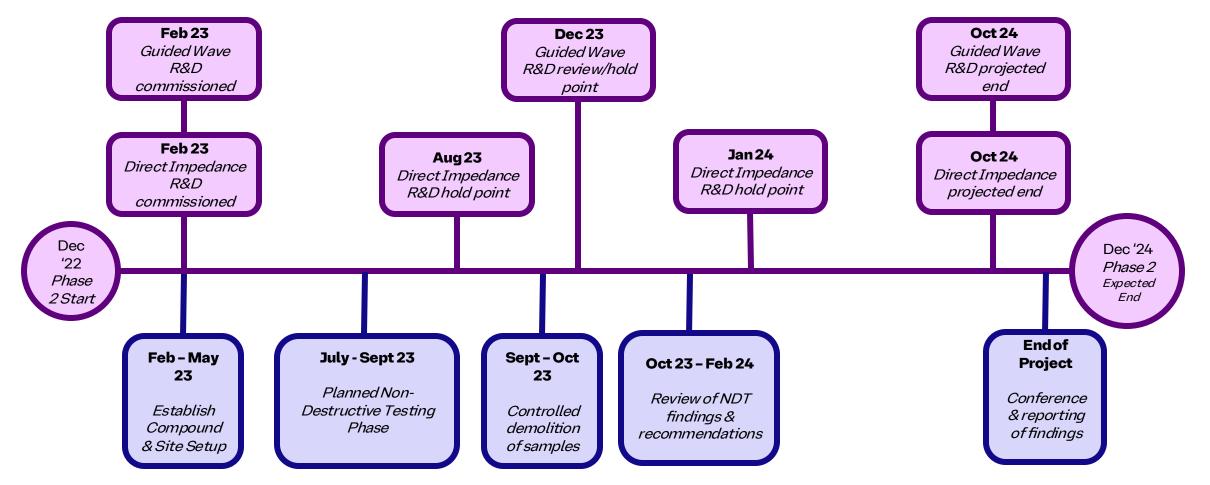
The 'Structures Moonshot' was born!

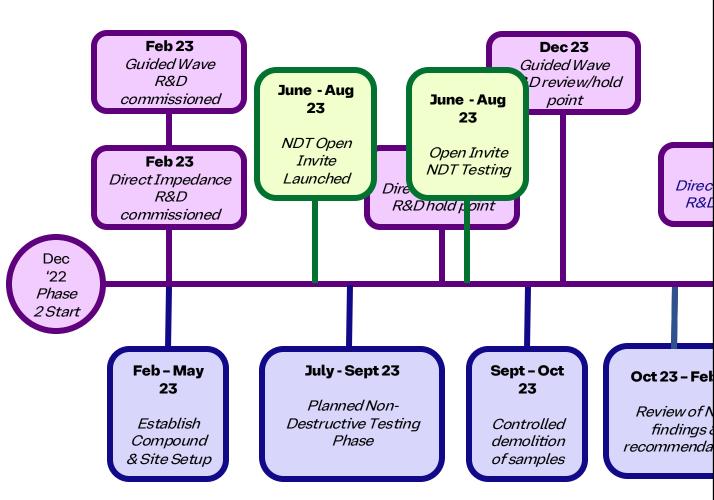


5. Applicants are not required to submit any personal details beyond contact details should further

communication be required (including any information as part of point 5 above). These data will not be shared

outside of this call for ideas nor used for any other purposes without the express consent of the applicant.




In **2021**, a global "Call for Ideas" was held, looking for technologies that could:

- Identify if the conditions for corrosion exist and how severe they are
- 2. Identify if corrosion is actually occurring
- 3. Identify how much corrosion has occurred

30+ Ideas were submitted, and independently scored across fields such as cost to deploy, scalability, feasibility to identify shortlist technologies for the Moonshot

Contact us Listen to this website About us Publications Media centre

Search the website

Publications Media centre

Search the website

For a contact us Publication Media centre

Search the website

Careers

Home > Our work > Innovation and research > Get involved with innovation > Competitions

Competitions

Through our competitions, we unlock the knowledge to transform our road network in the future.

We run targeted research and innovation competitions to help us solve some of our challenges.

We'll publish details of current competitions on this page. If you think you have a potential solution, we welcome your application.

Current competitions

Finding pioneering ways to take care of bridges

We are looking to revolutionise the way we take care of bridges and other structures by hunting out new and innovative ways that will spot potential defects sooner.

Research has begun to help us on the ambitious journey towards self-monitoring and selfmaintaining bridges with cutting-edge technology and modern methods being sought out for testing.

One of the greatest threats to bridges and structures on our road network is the corrosion of steel elements which are often encased in concrete.

This research project, Structures Moonshot, is focusing on two specific features in particular, the steel tendons in post-tensioned structures and reinforcement within concrete half-joints – a 'shelf' constructed at the end of one span to support the adjacent span.

These features can be vulnerable to deterioration but are difficult to access and often require intrusive investigations to assess the condition. This can require lane or road closures causing disruption for motorists.

We want to find solutions that can detect defects sooner and resolve the issues in a less disruptive and a non-destructive way and so we have launched a competition as part of the project to find new innovations and technology.

The project is being taken forward by Alkíns-Jacobs Joint Venture (AJJV) which will carry out extensive testing and research to identify the most suitable technologies for conducting advanced forms of Non-Destructive Testing (NDT) on structures.

New ideas are being sought which may include experimenting with machine learning and artificial intelligence to detect critical hidden structural defects. Solutions could range from advanced sensors, imaging technologies and machine learning algorithms.

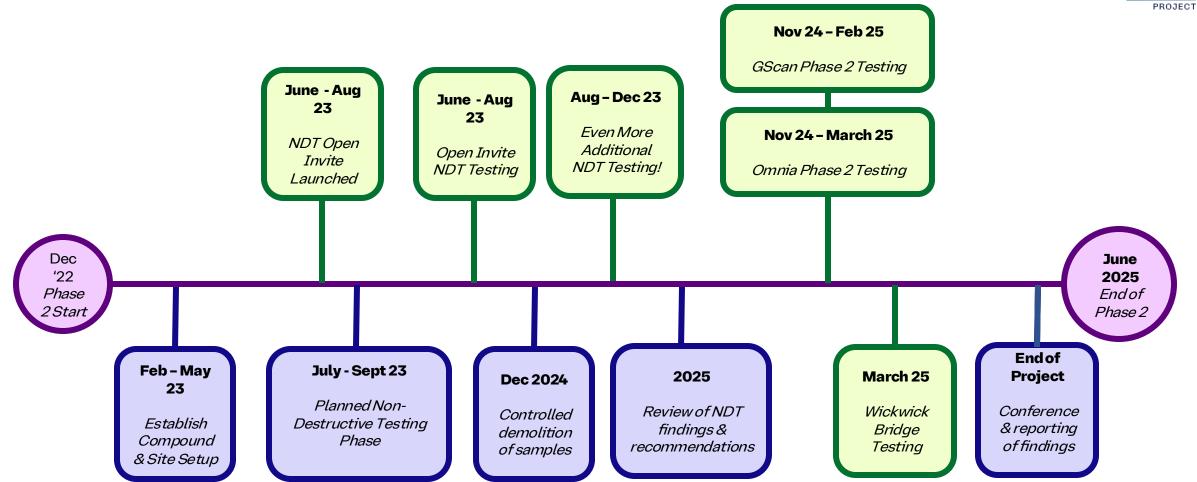
What is on offer for the successful entrants

Successful entrants will be given a rare opportunity to carry out some real-world testing of their products on sample bridge sections taken from the decommissioned A14 Huntingdon Railway Viaduct. This will provide a platform to showcase their products to us and the wider industry before the sample is demolished which will allow participants to validate their results.

The outcomes of the testing will enable participants to optimise the effectiveness and applicability of their solutions. The results will also be published to enable collaboration and shared learning across the construction industry.

How to register

Organisations interested in trialling emerging technology and innovations should submit their entries via this entry form by 31 July 2023.


Testing will take place in August

If you have any enquiries or would like to learn more about the project, please contact moonshot.comms@atkinsolobal.com

Read our privacy notice

What Have We Achieved?

We have undertaken **over 60 different NDT tests**, considering people, process and technology, providing one of the most comprehensive studies of NDT technologies and their practical validation to date! Our tests have covered **over 20 different forms of inspections**, from simple visual inspection through to X-ray radiography and muon tomography! We have collaborated with **over 20 different teams and companies worldwide**!

We have **invested in the development of cutting-edge new technologies**, supporting their development from desk studies through to real-world, deployable solutions

We have developed **new means of federating these data together**, enabling holistic data reviews

We have **comprehensively documented all of our work** with reports, presentations, photographs and extensive videos

Our reports **review the reliability of the investigated technologies** in identifying different defects, showing how different solutions can be deployed depending on the structure and the causes for concern

We have **created a suite of user-friendly one-pagers** that will provide asset owners with the key information they need to enable the deployment of the right technologies at the right time

What Have We Achieved?

We have proven that we have a global community of hugely experienced and collaborative NDT specialists who are committed to this problem, and willing to share their expertise to make our Moonshot a reality!

What Have We Learned?

We *are* moving towards our moonshot vision where our technology is able to uncover the secrets of our most complex structures, aided by AI and Machine Learning

BUT...

There still isn't one 'silver bullet' – we now have more confidence in our approaches but there is still a need to blend multiple approaches and technologies together

There also still exists the need for both intrusive and numerical studies, but we can now better blend these with our NDT data

...and there is always more to discover and learn!

